Hematopoietic progenitor and stem cells from bone marrow have been sorted by FACS (LSK, Lineage -, Sca1 + and cKit +) and co-culture during 18h without cytokines with or without extracellular vesicles (EV) secreted by AFT stromal cells.
Extracellular vesicles of stromal origin target and support hematopoietic stem and progenitor cells.
Specimen part
View SamplesSmall RNAs (sRNA) that act by base pairing with trans-encoded mRNAs modulate metabolism in response to a variety of environmental stimuli. Here, we describe an Hfq-binding sRNA (FnrS) whose expression is induced upon a shift from aerobic to anaerobic conditions and which acts to down regulate the levels of a variety of mRNAs encoding metabolic enzymes. Anaerobic induction in minimal medium depends strongly on FNR but is also affected by ArcA and CRP. Whole genome expression analysis showed that the levels of at least 32 mRNAs are down regulated upon FnrS overexpression, 15 of which are predicted to base pair with FnrS by TargetRNA. The sRNA is highly conserved across its entire length in numerous enterobacteria, and mutation analysis revealed that two separate regions of FnrS base pair with different sets of target mRNAs. The majority of the target genes previously reported to be down regulated in an FNR-dependent manner lack recognizable FNR binding sites. We thus suggest that FnrS extends the FNR regulon and increases the efficiency of anaerobic metabolism by repressing the synthesis of enzymes that are not needed under these conditions.
Reprogramming of anaerobic metabolism by the FnrS small RNA.
No sample metadata fields
View SamplesTo better understand the scale of gene expression changes that occur during the formation of mature adipocytes from preadipocytes, we compared and characterised the transcriptome profile of mesenchymal stromal cells derived from human adipose tissue, otherwise known as adipose-derived stromal cells (ASCs), undergoing adipocyte differentiation on day 1, 7, 14 and 21 (representing the early to late stage process of adipogenesis). Microarray technique was systematically employed to study gene expression in adipose-derived stromal cells during adipogenic differentiation over a 21 day period to identify genes that are important in driving adipogenesis in humans.
Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation.
Sex, Age, Specimen part, Subject
View SamplesMutations of -catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and carcinomas (ACC). However, the target genes of CTNNB1 have not yet been identified in adrenocortical tumors.
Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations.
Specimen part
View SamplesThe zebrafish is a powerful model for the study of hematopoietic stem and progenitor cells (HSPC). We have developed a novel HSPC-specific transgenic line (Runx1+23:GFP). We have used this line in time-lapse live imaging studies to track the migration of HSPC during development. We have also performed a chemical genetic screen to find small molecules that modulate HSPC numbers during development. Treating embryos from 2-3 days post fertilization (2-3 dpf) then fixing for in situ staining with HSPC probes cmyb and runx1, we found the compound lycorine increased HSPC numbers. Applying this compound during time-lapse live imaging showed increased accumulation of Runx+ HSPC in the caudal hematopoietic tissue (CHT). Treatment from 2-3 dpf, then washing off the compound, had a sustained effect on the size of the HSPC with Runx+ numbers higher at 5 and 7 dpf.
Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche.
Specimen part, Treatment
View SamplesContinuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced regulatory T cells. To decipher the molecular mechanisms governing this process, microarray data comparing highly (Ly-6C-) and lowly (Ly-6C+) Self-reactive naive CD4 T cells were obtained.
Calcium-mediated shaping of naive CD4 T-cell phenotype and function.
Specimen part
View SamplesWe perfomed single-cell RNA-sequnecing of around 10,000 cells from normal human liver tissue to construct a human liver cell atlas. We reveal previously unknown subtypes in different cell type compartments. We also use our normal liver cell atlas to infer perturbed phenoytpes of cells from HCC samples, human cells engrafted into a mouse liver and liver organoids. Overall design: Single cells were isolated from human liver resection specimens and then sorted by FACS into 384 well plates in a unbiased way and on the basis of cell surface markers for distinct cell types. ScRNA-seq was done using the mCelSeq2 protocol cellbarcodes_cellid.csv Supplemetary file contains cellds and one of the 192 unique cellbarcode associated with the cellid.
A human liver cell atlas reveals heterogeneity and epithelial progenitors.
Specimen part, Subject
View SamplesAims: To map histone modifications with unprecedented resolution both globally and locus-specifically, and to link modification patterns to gene expression. Materials & methods: Using correlations between quantitative mass spectrometry and chromatin immunoprecipitation/microarray analyses, we have mapped histone post-translational modifications in fission yeast (Schizosaccharomyces pombe). Results: Acetylations at lysine 9, 18 and 27 of histone H3 give the best positive correlations with gene expression in this organism. Using clustering analysis and gene ontology search tools, we identified promoter histone modification patterns that characterize several classes of gene function. For example, gene promoters of genes involved in cytokinesis have high H3K36me2 and low H3K4me2, whereas the converse pattern is found ar promoters of gene involved in positive regulation of the cell cycle. We detected acetylation of H4 preferentially at lysine 16 followed by lysine 12, 8 and 5. Our analysis shows that this H4 acetylation bias in the coding regions is dependent upon gene length and linked to gene expression. Our analysis also reveals a role for H3K36 methylation at gene promoters where it functions in a crosstalk between the histone methyltransferase Set2KMT3 and the histone deacetylase Clr6, which removes H3K27ac leading to repression of transcription. Conclusion: Histone modification patterns could be linked to gene expression in fission yeast.
Genome-wide mapping of histone modifications and mass spectrometry reveal H4 acetylation bias and H3K36 methylation at gene promoters in fission yeast.
No sample metadata fields
View SamplesPurpose: This study was carried out to determine the consequences of the Rfx2-/- genotype on spermatogenesis in the mouse Methods: RNA was extracted from decapsulated testes of 21 day old mixed background mice of either genotype. Deep sequencing was used to determine quantitative expression of the genomes from independent replicates of each genotype Results: RNA-Seq analysis identified some 105 genes that are down regulated at least 2-fold in Rfx2-/- testes, with ~50 being reduced at least 10-fold Conclusion: Spermatogenesis undergoes complete arrest just prior to the end of the round spermatid period of sperm development in mutant mice. Sequencing results showed that approximately 105 genes were downregulated 2 fold or more in the testes of mutant mice. Comparison of similar studies of targeted mutations in genes for other transcription factor demonstrate that Rfx2 has a large and nearly unique set of genes that depend on it directly or indirectly. A large number of downregulated genes are identified with cilia function. Overall design: Testicular mRNA profiles were determined by deep sequencing using testes from 5 independent wild type and 6 independent Rfx2-/- mice
RFX2 Is a Major Transcriptional Regulator of Spermiogenesis.
No sample metadata fields
View SamplesPurpose: This study was carried out to determine the consequences of the Rfx2-/- genotype on spermatogenesis in the mouse Methods: RNA was extracted from decapsulated testes of 29-30 day old mixed background mice of either genotype. Deep sequencing was used to determine quantitative expression of the genomes from independent replicates of each genotype Results: RNA-Seq analysis identified some 640 genes that are down regulated at least 2-fold in Rfx2-/- testes, with ~150 being reduced at least 10-fold Conclusion: Spermatogenesis undergoes complete arrest just prior to the end of the round spermatid period of sperm development in mutant mice. Sequencing results showed that approximately 640 genes were downregulated 2 fold or more in the testes of mutant mice. Comparison of similar studies of targeted mutations in genes for other transcription factor demonstrate that Rfx2 has a large and nearly unique set of genes that depend on it directly or indirectly. A large number of downregulated genes are identified with cilia function. Overall design: Testicular mRNA profiles were determined by deep sequencing using testes from 5 independent wild type and 4 independent Rfx2-/- mice
RFX2 Is a Major Transcriptional Regulator of Spermiogenesis.
No sample metadata fields
View Samples