Fibrotic diseases are a group of pathologies with high incidence and mortality. Despite extensive research efforts, efficient therapies are still not available. Understanding the molecular mechanisms driving the onset, progression and possible resolution of fibrosis is a prerequisite to the development of successful therapies. The central role of the TGF-beta pathway and myofibroblasts in the pathogenesis of fibrosis is now generally accepted. The possible mechanisms of myofibroblast elimination or dedifferentiation, on the other hand, are still almost uncharted territory. Basic fibroblast growth factor (bFGF) is able to suppress myofibroblastic differentiation of mesenchymal cells, but the underlying mechanism has not been studied in detail. Here, we show that sustained expression of the transcription factor EGR4, which is inducible by bFGF, in primary chicken embryo dermal myofibroblasts results in suppression of the myofibroblastic phenotype, characterized by the loss of smooth muscle actin fibers and a substantial reduction in the production of extracellular matrix. Detailed analysis of the possible molecular mechanisms revealed FOXG1, BAMBI, NAB1, NAB2 and DUSP5 genes forming an EGR4 regulated network counteracting autocrine TGF-beta signaling.
Effective myofibroblast dedifferentiation by concomitant inhibition of TGF-β signaling and perturbation of MAPK signaling.
Specimen part
View SamplesMyofibroblast is a specific type of mesenchymal cell characterized by synthesis of extracellular matrix and contractile activity. While it serves a beneficial function during tissue wound healing under physiological conditions, it can cause devastating damage to organs afflicted with fibrosis. Myofibroblasts are also present in tumor stroma and contribute actively to tumor growth and spreading. Chicken embryo dermal myofibroblasts (CEDM) represent a novel ex vivo model suitable for the analysis of myofibroblastic phenotype as they show strongly pronounced, uniform and self-sustained myofibroblastic phenotype that is stable in time. As myofibroblastic differentiation is controlled chiefly by TGF-beta signaling, the understanding of the differentiation program entails the determination of TGF-beta-regulated genes. To achieve such a goal, we performed oligonucleotide microarray analysis of CEDM cells treated with a selective TGFBR1 kinase inhibitor. Genes reported previously to be under the control of TGF-beta signaling in mammalian cells appeared among the affected genes also in CEDM cells and many so far unknown TGF-beta targets were revealed.
Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts.
Specimen part, Treatment
View SamplesHuman airway epithelial cells cultured in vitro at air-liquid interface (ALI) form a pseudostratified epithelium that forms tight junctions and cilia, and produces mucin, and are widely used as a model of differentiation, injury, and repair. To assess how closely the transcriptome of ALI epithelium matches that of in vivo airway epithelial cells, we used microarrays to compare the transcriptome of human large airway epithelial cells cultured at ALI with the transcriptome of large airway epithelium obtained via bronchoscopy and brushing. Gene expression profiling showed global gene expression correlated well between ALI cells and brushed cells, but there were some differences. Gene expression patterns mirrored differences in proportions of cell types (ALI have higher percentages of basal cells, brushed cells have higher percentages of ciliated cells), with ALI cells expressing higher levels of basal cell-related genes and brushed cells expressing higher levels of cilia-related genes. Pathway analysis showed ALI cells had increased expression of cell cycle and proliferation genes, while brushed cells had increased expression of cytoskeletal organization and humoral immune response genes. Overall, ALI cells are a good representation of the in vivo airway epithelial transcriptome, but for some biologic questions, the differences in the in vitro vs in vivo environments need to be considered.
Do airway epithelium air-liquid cultures represent the in vivo airway epithelium transcriptome?
Sex, Age
View SamplesA lactobacilli dominated microbiota in most pre and post-menopausal women is an indicator of vaginal health. A Nugent scoring system serves as a proxy for determining the ratio of lactobacilli to other vaginal inhabitants where a high score usually represents a diseased state, whilst an intermediate score represents a warning zone. The objective of this double blinded, placebo-controlled crossover study was to evaluate in 14 post-menopausal women with an intermediate score, the effect of vaginal administration of probiotic L. rhamnosus GR-1 and L. reuteri RC-14 on the microbiota and host response. The probiotic treatment did not result in changes to clinical parameters such as dryness, irritation and comfort, compared to when placebo was applied. Analysis using 16S rRNA sequencing and metabolomics profiling revealed that the proportional abundance of Lactobacillus was increased following probiotic administration as compared to placebo, which was weakly associated with an increase in lactate levels. Analysis of host responses by microarray showed the probiotics had an immune-modulatory response and multiplex cytokine analysis showed up-regulation of IL-5. This is the first study to use an interactomic approach for the study of vaginal probiotic administration in post-menopausal women. It shows that in some cases multifaceted approaches are required to detect the subtle trigger molecular changes induced by the host to instillation of probiotic strains.
A systems biology approach investigating the effect of probiotics on the vaginal microbiome and host responses in a double blind, placebo-controlled clinical trial of post-menopausal women.
Specimen part
View SamplesA model of tumor metastasis based on v-src transformed immortalized cell lines was developed. The model consists of highly metastatic PR9692 cell line and a derived clone PR9692-E9 which has lost the metastatic abilities. Introduction of exogenous EGR1 gene into the non-metastasizing PR9692-E9 cells completely restores the metastatic potential. Revealed changes in gene expression provide insight into the molecular mechanisms contolling metastatic behavior of sarcoma cells.
The transcription factor EGR1 regulates metastatic potential of v-src transformed sarcoma cells.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Stromal-Based Signatures for the Classification of Gastric Cancer.
Sex, Specimen part
View SamplesIncreasing success is being achieved in the treatment of malignancies with stromal-targeted therapies, predominantly in anti-angiogenesis and immunotherapy, predominantly checkpoint inhibitors. Despite 15 years of clinical trials with anti-VEGF pathway inhibitors for cancer, we still find ourselves lacking reliable predictive biomarkers to select patients for anti-angiogenesis therapy. For the more recent immunotherapy agents, there are many approaches for patient selection under investigation. Notably, the predictive power of an Ad-VEGF-A164 mouse model to drive a stromal response with similarities to a wound healing response shows relevance for human cancer and was used to generate stromal signatures. We have developed gene signatures for 3 stromal states and leveraged the data from multiple large cohort bioinformatics studies of gastric cancer (TCGA, ACRG) to further understand how these relate to the dominant patient phenotypes identified by previous bioinformatics efforts. We have also designed multiplexed IHC assays that robustly represent the vascular and immune diversity in gastric cancer. Finally, we have used this methodology to arrive at a hypothesis of how angiogenesis and immunotherapy may fit into the experimental approaches for gastric cancer treatments.
Stromal-Based Signatures for the Classification of Gastric Cancer.
Sex, Specimen part
View SamplesIncreasing success is being achieved in the treatment of malignancies with stromal-targeted therapies, predominantly in anti-angiogenesis and immunotherapy, predominantly checkpoint inhibitors. Despite 15 years of clinical trials with anti-VEGF pathway inhibitors for cancer, we still find ourselves lacking reliable predictive biomarkers to select patients for anti-angiogenesis therapy. For the more recent immunotherapy agents, there are many approaches for patient selection under investigation.
Stromal-Based Signatures for the Classification of Gastric Cancer.
Specimen part
View SamplesWe used microarrays to compare gene expression between three HRAS-wild type lines (13, 162d, 165d) and three HRAS-G12S mutant lines (7, 8, 16).
Dysregulation of astrocyte extracellular signaling in Costello syndrome.
Specimen part
View SamplesWhile most novel tuberculosis (TB) vaccines are designed for delivery via the muscle or skin for enhanced protection in the lung, it has remained poorly understood whether systemic vaccine-induced memory T cells can readily home to the lung mucosa prior to and shortly after pathogen exposure. We have investigated this issue by using a model of parenteral TB immunization and intravascular immunostaining. We find that systemically induced memory T cells are restricted to the blood vessels in the lung, unable to populate either the lung parenchymal tissue or the airway under homeostatic conditions. We further find that after pulmonary TB infection, it still takes many days before such T cells can enter the lung parenchymal tissue and airway. We have identified the acquisition of CXCR3 expression by circulating T cells to be critical for their entry to these lung mucosal compartments. Our findings offer new insights into mucosal T cell biology and have important implications in vaccine strategies against pulmonary TB and other intracellular infections in the lung.
CXCR3 Signaling Is Required for Restricted Homing of Parenteral Tuberculosis Vaccine-Induced T Cells to Both the Lung Parenchyma and Airway.
Sex, Specimen part, Time
View Samples