Purpose: the goal of this study was to test whether the amounts of genome-encoded Line-1s are influenced by TUTases and Mov10 Methods: RNA-Seq data were obtained for PA-1 or Hek293 Flp-IN T-Rex cells in which wild-type or mutant TUTases or Mov10 were overexpressed or the proteins were depleted by RNA interference Results: Minor changes (less than 0.4-fold) were observed in the amounts of mRNAs of Homo sapiens-specific Line-1 families in Hek293 Flp-IN T-Rex and PA-1 either overexpressing or depleted of TUTases and Mov10 Overall design: LINE-1 repetitive elements profiles of Hek293 Flp-IN T-Rex and PA-1 generated by deep sequencing, in triplicate, using Illumina NextSeq 500 and Illumina HiSeq 2500.
Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s.
Cell line, Subject
View SamplesTo assay the effect of depletion of the RNA exosome on RNAs shorter than the standard length captured by RNA-seq (>200 nt), we created RNA-seq libraries using fragmented RNA and a linker-ligation-based protocol that does not deplete RNAs shorter than 200 nt. Note: these data relate to Figure 6E in Lubas, Andersen et al., Cell Reports 2014 (accepted) Overall design: These samples constitute RNA-seq libraries prepared to enrich for short RNA fragments such as snRNA and snoRNAs. Three different HeLa cell RNAi experiments were used to generate the RNA samples applied in the library construction: control transfected, hRRP40-depleted and triple-depleted of the known RNA exosome-associated ribonucleases (DIS3, DIS3L and hRRP6 knock-down). By these means the data offers reveal RNA exosome substrates via their up-regulation in the respective knock-downs NOTE: The ''Figure6E_RNAseq_DataTable_PlottedValues.txt'' was generated from total 5 samples, with two additional published samples [SRP031620] and provided to better allow readers to fully replicate the analyses presented in the publication.
The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis.
No sample metadata fields
View SamplesIn our studies we were searching for the new factors engaged in mitochondrial nucleic acids metabolism under stress conditions in humans. Quantitative proteomic approach revealed C6orf203 protein as a potential new factor engaged in response to perturbed mitochondrial gene expression. We showed that C6orf203 is a mitochondrial RNA binding protein which is able to rescue diminished mitochondrial transcription in stress conditions. Overall design: The dataset corresponds to RNAseq studies and comprises experiment performed in triplicate. The aim of this study was to examine the influence of C6orf203 silencing on mitochondrial transcriptome. To this end we engineered two stable cell lines with the use of human 293 Flp-In T-Rex cells as parental. First cell line inducible expressed miRNAs silencing endogenous copy of C6orf203 gene while second one expressed additionally transgenic version of FLAG-tagged C6orf203 which contained silent mutations causing insensitivity to miRNA. We also analyzed RNA isolated from parental 293 Flp-In T-Rex cells. RNAseq libraries were prepared with the use of strand-specific library preparation procedures. RNAs were random fragmented and reverse transcribed using random oligomers as primers (dUTP-based protocol, see PMID: 29590189, PMID: 22609201; this pipeline enables analysis of RNAs (> ~100 nucleotides)). RNA was isolated from unfractionated cells using TRI-Reagent. Before preparation of the libraries total RNA was subjected to depletion of nuclear-encoded rRNAs (Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat), Epicenter). Libraries were sequenced with the help of Illumina sequencing platform.
Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria.
Specimen part, Subject
View SamplesThe exosome-independent exoribonuclease DIS3L2 is mutated in Perlman syndrome. Here we used extensive global transcriptomic and targeted biochemical analyses to identify novel DIS3L2 substrates in human cells. We show that DIS3L2 regulates pol II transcripts, comprising selected canonical and histone-coding mRNAs, and a novel FTL_short RNA from the ferritin mRNA 5'' UTR. Importantly, DIS3L2 contributes to surveillance of pre-snRNAs during their cytoplasmic maturation. Among pol III transcripts, DIS3L2 particularly targets vault and Y RNAs and an Alu-like element BC200 RNA, but not Alu repeats, which are removed by exosome-associated DIS3. Using 3'' RACE-Seq, we demonstrate that all novel DIS3L2 substrates are uridylated in vivo by TUT4/TUT7 poly(U) polymerases. Uridylation-dependent DIS3L2-mediated decay can be recapitulated in vitro, thus reinforcing the tight cooperation between DIS3L2 and TUTases. Together these results indicate that catalytically inactive DIS3L2, characteristic of Perlman syndrome, can lead to deregulation of its target RNAs to disturb transcriptome homeostasis. Overall design: To investigate DIS3L2 functions genome-wide, total RNA samples were collected from model cell lines producing either WT or mut DIS3L2 three days after induction with doxycycline. The RNA samples were rRNA-depleted before preparation of strand-specific total RNA libraries according to the standard TruSeq (Illumina) protocol. TruSeq library preparation favours RNA molecules longer than 200 nt, and shorter transcripts are suboptimal for sequencing via this protocol. Thus, to obtain information about potential DIS3L2 RNA substrates with lengths between 20 and 220 nt, another RNA-Seq was carried out in parallel (with size selection through gel purification). The stable inducible HEK293 cell lines producing DIS3L2 variants were obtained using “pAL_01” and “pAL_02” plasmid constructs and the Flp-In™ T-REx™ system according to the manufacturer’s guidelines. “pAL_01” and “pAL_02” plasmids are vectors for co-expression of recoded C-terminal FLAG-tagged DIS3L2 [wild type (WT) variant or its catalytic mutant counterpart (mut), respectively] and sh-miRNAs directed against endogenous DIS3L2 mRNA.
Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs.
No sample metadata fields
View SamplesA multi-subunit exosome complex is a major eukaryotic exoribonuclease that in the cytoplasm requires the SKI complex for activity. In yeast, SKI forms a heterotetramer and delivers RNA substrates directly into the exosome channel. Such cooperation requires Ski7 protein, which links the exosome and SKI complexes. However, since the human genome does not encode an orthologue of the yeast Ski7, the factor mediating SKI and exosome linkage in human cells is unknown. Proteomic analysis revealed that the human cytoplasmic exosome interacts with HBS1LV3, a protein encoded by a newly discovered short splicing isoform of HBS1L. HBS1LV3 recruits the SKI complex to the exosome. In contrast, the canonical HBS1L variant, HBS1LV1, acting as a ribosome dissociation factor, does not associate with the exosome and instead interacts with the mRNA surveillance factor PELOTA. HBS1LV3 contains a new domain of unknown structure with the short linear motif RxxxFxxxL, which is responsible for exosome binding, and may interact with the exosome core subunit RRP43 in way that resembles the association between Rrp6 RNase and Rrp43 in yeast. Depletion of HBS1LV3 and the SKI complex helicase SKI2W similarly affected the transcriptome by strongly upregulating a large number of genes. Moreover, following HBS1LV3 or SKI2W depletion the half-lives of representative upregulated mRNAs were increased, thus supporting the involvement of HBS1LV3 and SKI2W in the same mRNA degradation pathway. In contrast, HBS1LV1 depletion had little effect on transcriptome homeostasis. Our data indicate that human HBS1LV3 is the long-sought factor that links the exosome and SKI complexes to regulate cytoplasmic mRNA decay. Overall design: Examination of siRNA-mediated silencing in HEK293 cell lines. To identify transcripts that are degraded by cytoplasmic SKI/HBS1LV3/exosome supercomplexes, we used specific siRNAs to knock down HBS1LV1, HBS1LV3 or SKIV2L gene expression in (i) WT HEK293 cells and (ii) HEK293 cells rescued with siRNA insensitive protein. Analyses were performed in triplicate.
A short splicing isoform of HBS1L links the cytoplasmic exosome and SKI complexes in humans.
No sample metadata fields
View SamplesFAM46C is one of the most frequently mutated genes in multiple myeloma (MM) and encodes a protein of unknown function. Using a combination of in vitro and in vivo approaches, we demonstrate that FAM46C encodes an active cytoplasmic non-canonical poly(A) polymerase, which enhances mRNA stability and gene expression. Moreover, we also found that the reintroduction of active FAM46C into MM cell lines, but not its catalytically-inactive mutant, leads to broad polyadenylation and stabilization of mRNAs strongly enriched with those encoding endoplasmic reticulum-targeted proteins and induced cell death. This is, to our knowledge, the first report that directly associates cytoplasmic poly(A) polymerase with carcinogenesis. Furthermore, our data suggest that the human genome encodes at least eleven non-canonical poly(A) polymerases with four FAM46 family members. Since FAM46 proteins are differentially expressed during development, these proteins may positively regulate transcript stability and translational rate in a tissue-specific manner. Overall design: The H929 and SKMM1 MM cells were transduced with lentiviruses carrying FAM46CWTGFP (WT) or FAM46CD90A,D92AGFP (catalitic mutant). 72h after transgene delivery total RNA was extracted and RNA-seq libraries were prepared.
The non-canonical poly(A) polymerase FAM46C acts as an onco-suppressor in multiple myeloma.
Specimen part, Cell line, Subject
View SamplesWe analysed the effect of depriving the human cell of the catalytic activity of the nuclear 5' to 3' exoribonuclease XRN2. Catalytic amino acids in this protein had been defined previously, so it was possible to design a mutated catalytically inactive form of the protein (XRN2D233A-D235A) (PMID: 19194460). We created 293 Flp-In T-REx stable cell lines that induciby silence endogenous XRN2, and concomitantly express wild-type or inactive XRN2 in fusion with EGFP at the C-terminus. Thus, complementation of silencing of endogenous XRN2 with the expression of mutant version of the protein allows to directly link potential phenotypes with the lack of XRN2 enzymatic activity. To this end we isolated total RNA from tetracycline-treated cells, depleted it from rRNA and conducted strand-specific deep sequencing. Overall design: 6 samples were analysed. 3 replicates of control cells (endogenous copy of XRN2 gene is silenced and catalytically active exogenous XRN2-EGFP is expressed) and 3 replicates of cells deprived of XRN2 ribonucleolytic activity (endogenous copy of XRN2 gene is silenced and catalytically inactive exogenous XRN2(D233AD235A)-EGFP is expressed)
Versatile approach for functional analysis of human proteins and efficient stable cell line generation using FLP-mediated recombination system.
Specimen part, Subject
View SamplesChoroid plexuses (CP) develop early during development. They form a barrier between the blood and the cerebrospinal fluid, and fulfill important protective and nutritive functions. We used Affymetrix microarrays to assess whether CP of the lateral ventricles (LVCP) have similar functions in developing and adult brain. We identified distinct families of protective and transport genes and found that most of these genes were already well expressed during development.
Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection.
Specimen part
View SamplesHematopoietic Stem Cells (HSC) are originated during embryonic development from endothelial-like cells located in the ventral side of the dorsal aorta around day E10-12 of murine development. This region is called AGM for Aorta/Gonad/Mesonephros and refers to the tissues around the hemogenic aorta. Cells that emerge from the endothelium and show hematopoietic traits can be distinguished by the expression of the c-kit receptor and finally acquire the CD45 marker.
Hematopoietic stem cell development requires transient Wnt/β-catenin activity.
Specimen part
View SamplesVascular smooth muscle cells (VSMCs) show pronounced heterogeneity across and within vascular beds, with direct implications for their function in injury response and atherosclerosis. Here we combine single-cell transcriptomics with lineage tracing to examine VSMC heterogeneity in healthy mouse vessels. The transcriptional profiles of single VSMCs consistently reflect their region-specific developmental history and show heterogeneous expression of vascular disease-associated genes involved in inflammation, adhesion and migration. We detect a rare population of VSMC-lineage cells that express the multipotent progenitor marker Sca1, progressively downregulate contractile VSMC genes and upregulate genes associated with VSMC response to inflammation and growth factors. We find that Sca1 upregulation is a hallmark of VSMCs undergoing phenotypic switching in vitro and in vivo, and reveal an equivalent population of Sca1-positive VSMC-lineage cells in atherosclerotic plaques. Together, our analyses identify disease-relevant transcriptional signatures in VSMC-lineage cells in healthy blood vessels, with implications for disease susceptibility, diagnosis and prevention. Overall design: This entry contains data from the following analyses: (1) Bulk RNA-seq of mouse VSMCs isolated from aortic arch (AA) and descending thoracic aorta (DT) regions in triplicates. (2) Pooled RNA-seq of mouse Sca1- VSMCs and Sca1- or Sca1+ adventitial cells in triplicates. (3) Single-cell RNA-seq of VSMCs from the AA and DT regions (143 cells). (4) VSMC lineage label positive and negative cells isolated from the medial layer of mouse aorta, which expressed or did not express the Sca1 protein (155 cells). (5) 10X single-cell RNA-seq analysis of: lineage positive plaque cells isolated from mice following 14 or 18 weeks of high fat diet feeding, cells isolated from the whole aorta and lineage positive VSMCs from the medial layer.
Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels.
Specimen part, Subject
View Samples