SMARCB1 (Snf5/Ini1/Baf47) is a potent tumor suppressor, the loss of which serves as the diagnostic feature in Malignant Rhabdoid Tumors (MRT) and Atypical Teratoid/Rhabdoid Tumors (AT/RT), two highly aggressive forms of pediatric neoplasms. Here, we restore Smarcb1 expression in cells derived from Smarcb1-deficient tumors which developed in Smarcb1-heterozygous p53-/- mice.
Loss of IGFBP7 expression and persistent AKT activation contribute to SMARCB1/Snf5-mediated tumorigenesis.
Specimen part, Cell line
View SamplesStudy of PBMC gene expression during the first 10 weeks of therapy with Pegylated-interferon-alfa2b (PegIntronTM) and ribavirin (administered by weight) in HCV patients.
Cyclic changes in gene expression induced by Peg-interferon alfa-2b plus ribavirin in peripheral blood monocytes (PBMC) of hepatitis C patients during the first 10 weeks of treatment.
Subject
View SamplesThis is an analysis of Caco-2 BBe cell spontaneous differentiation. JF2dR1-JF2dR4 = proliferating cells; JF8dR1-JF8dR4 = 4 d post-confluent; JF15dR1-JF15dR4 = 11 d pc, differentiated
Gene expression profiling of Caco-2 BBe cells suggests a role for specific signaling pathways during intestinal differentiation.
No sample metadata fields
View SamplesThe objective of this study was to determine changes in gene expression within the extended amygdala following binge-like drinking by alcohol-preferring (P) rats. Adult male P rats were given 1-hr access to 15 and 30% ethanol (EtOH) three times daily for 8 weeks. Rats (n = 10/time point for EtOH and n = 6/time point for water) were killed by decapitation 1, 6 and 24 hr after the last drinking episode. Brains were extracted and rapidly frozen in isopentane in dry ice. RNA was prepared from individual micropunch samples of the nucleus accumbens shell (ACB-sh) and central nucleus of the amygada (CeA); microarray analyses were conducted with Affymetrix Rat 230.2 chips. EtOH intakes were 1.5-2 g/kg/session. Because too few genes changed at the individual time points, an overall effect, comparing the water and EtOH groups, was determined. In the ACB-sh and CeA, there were 276 and 402 probe sets for named genes, respectively, that were different between the two groups. There were 1.5- to 3.5- fold more genes up-regulated than down-regulated in both regions, with most differences between 1.1- to 1.2-fold. Although there were several significant Biological Processes categories in common between the 2 regions (e.g., synaptic transmission, neurite development), there were few genes in common between the two regions that differed between the EtOH and water groups. Overall, the results suggest that chronic binge-like alcohol drinking by P rats produces changes in the expression of genes that could alter neuronal function by different mechanisms in the ACB-sh and CeA.
Changes in gene expression in regions of the extended amygdala of alcohol-preferring rats after binge-like alcohol drinking.
Specimen part
View SamplesEthanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects.
Treatment
View SamplesThe goal of this study was to identify candidate genes that may influence alcohol consumption by comparing gene expression in 5 brain regions of alcohol-nave iP and P.NP rats.
Candidate genes for alcohol preference identified by expression profiling in alcohol-preferring and -nonpreferring reciprocal congenic rats.
Specimen part
View SamplesA highly significant quantitative trait locus (QTL) that influenced alcohol preference was identified in the iP/iNP rats on chromosome 4.
Identification of candidate genes for alcohol preference by expression profiling of congenic rat strains.
No sample metadata fields
View SamplesThe objective of this study was to test the hypothesis that innate differences in gene expression in the brain could
Functional gene expression differences between inbred alcohol-preferring and -non-preferring rats in five brain regions.
No sample metadata fields
View SamplesBone mineral density and structure candidate gene analysis in alcohol-non-preferring (NP), alcohol-preferring (P), congenic NP (NP.P) and congenic P (P.NP) rats
Identification of genes influencing skeletal phenotypes in congenic P/NP rats.
No sample metadata fields
View SamplesTwo nutrient sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), control yeast growth and metabolism in response to changes in nutrient availability. Starvation for amino acids activates the GAAC pathway, involving Gcn2p phosphorylation of eIF2 and preferential translation of GCN4, a transcription activator of genes involved in amino acid metabolism. TOR senses nitrogen availability and regulates gene expression through transcription factors, such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome in response to amino acid starvation and rapamycin treatment. Of the ~2500 genes whose expression was changed by 2-fold or greater, Gcn4p and Gln3p were required for 542 and 657 genes, respectively. While Gcn4p activates a common core of 57 genes in response to amino acid starvation or rapamycin treatment, the different stress arrangements allow for variations in Gcn4p-directed transcription. With few exceptions, genes requiring Gcn2p eIF2 kinase for induced expression also required Gcn4p, emphasizing the role of Gcn2p as an upstream activator of Gcn4p-directed transcription. There is also significant coordination between the GAAC and TOR pathways, with Gcn4p being required for activation of more genes during rapamycin treatment than Gln3p. Importantly, TOR regulates the GAAC-directed transcription of genes required for assimilation of nitrogen sources, such as -amino-butyric acid. Therefore, yeast has integrated gene expression responses to amino acid abundance and nitrogen source quality through the control of Gcn2p phosphorylation of eIF2 and GCN4 translation.
Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast.
Treatment
View Samples