Olfaction is fundamental for survival but there is little known about the connection between smell perception and metabolism. In this study we implemented IGF1R knockout mice in the olfactory sensory neurons, by olfactory marker protetin (OMP) Cre specific recombination, and investigated metabolic parameters, smell perception and transcriptome sequencing. We could demonstrate that IGF1R knockout in the olfactory sensory neurons results in enhanced smell perception, insulin resistance under normal chow diet conditions and increased adiposity in mice fed control diet. Transcriptome analysis of the olfactory epithelium revealed differential expression of markers for mature and immature olfactory sensory neurons, being down-regulated and up- regulated respectively, pointing to differentiation-dependent changes that result in increased olfactory perception. Collectively, this study provides evidence that enhanced smell perception can result in insulin resistance and increased adiposity. Overall design: mRNA profiles of olfactory sensory neurons (OSN) extracted from homozygous tissue-specific IGF1R knockout (OMPIGF1R) and respective cotnrol mice (OMPflfl) were generated by deep sequencing, in four replicates using Illumina sequencing
The Sense of Smell Impacts Metabolic Health and Obesity.
Age, Cell line, Subject
View SamplesPediatric adrenocortical tumors (ACT) are rare and often fatal malignancies; little is known regarding their etiology and biology. To provide additional insight into the nature of ACT, we determined the gene expression profiles of 24 pediatric tumors (five adenomas, 18 carcinomas, and one undetermined) and seven normal adrenal glands. Distinct patterns of gene expression, validated by quantitative real-time PCR and Western blot analysis, were identified that distinguish normal adrenal cortex from tumor. Differences in gene expression were also identified between adrenocortical adenomas and carcinomas. In addition, pediatric adrenocortical carcinomas were found to share similar patterns of gene expression when compared with those published for adult ACT. This study represents the first microarray analysis of childhood ACT. Our findings lay the groundwork for establishing gene expression profiles that may aid in the diagnosis and prognosis of pediatric ACT, and in the identification of signaling pathways that contribute to this disease.
Gene expression profiling of childhood adrenocortical tumors.
Sex
View SamplesDouble-stranded RNA (dsRNA) can enter different pathways in mammalian cells, including sequence-specific RNA interference, sequence-independent interferon response and editing by adenosine deaminases. To assess the potential of expressed dsRNA to induce interferon stimulated genes in somatic cells, we performed microarray analysis of HEK293 and HeLa cells transfected with a MosIR plasmid expressing an mRNA with a long inverted repeat structure in its 3UTR (MosIR) or with a parental MosIR plasmid (without inverted repeat) as a control.
dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells.
Specimen part
View SamplesLaser capture microdissection coupled with microarray genes expression analysis were utilized in order to elucidate the regulatory networks active in epithelial cells of the neonatal and adult mouse uterus.
Cell-specific transcriptional profiling reveals candidate mechanisms regulating development and function of uterine epithelia in mice.
Specimen part
View SamplesTo identify genes differentially expressed in the glandless uterus, whole uteri were collected from control (uterine glands present) and PUGKO (no uterine glands) mice at day of pseudopregnancy (DOPP) 3.5 (day DOPP 0.5= vaginal plug). Microarray analysis identified differentially expressed genes in the glandless uteri of PUGKO mice as compared to control mice.
Cell-specific transcriptional profiling reveals candidate mechanisms regulating development and function of uterine epithelia in mice.
Specimen part
View SamplesTo identify candidate genes regulated by forkhead transcription factor box A2 (FOXA2) in the uterus, control and Foxa2-deleted uteri were collected at day of pseudopregnancy (DOPP) 3.5 (DOPP 0.5= vaginal plug). Microarray analysis identified differentially expressed genes in the Foxa2-deleted as compared to control uteri that are candidiate FOXA2-regulated genes in the uterus.
Integrated chromatin immunoprecipitation sequencing and microarray analysis identifies FOXA2 target genes in the glands of the mouse uterus.
Specimen part
View SamplesTo identify the genes regulated by androgen receptor (AR), we performed the profiling array analysis on the CWR22Rv1 cells and determined the differentially expressed genes upon the knockdown of AR.
The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Specimen part, Cell line
View SamplesWe identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Cell line
View SamplesWe identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability. In this data set we compare the expression profile of mouse ES upon Trim71 KD versus that of the parental cells.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Specimen part
View Samples