refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 132 results
Sort by

Filters

Technology

Platform

accession-icon GSE38392
Targeting EWSR1-FLI1 oncogene induced protein kinase C beta abolishes Ewing sarcoma growth in vivo
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Identification of druggable targets is a prerequisite for developing targeted therapies against Ewing sarcoma. We report the identification of Protein Kinase C Beta (PRKCB) as a protein specifically and highly expressed in Ewing sarcoma as compared to other pediatric cancers. Its transcriptional activation is directly regulated by the EWSR1-FLI1 oncogene. Getting insights in PRKCB activity we show that, together with PRKCA, it is responsible for the phosphorylation of histone H3T6, allowing global maintenance of H3K4 trimethylation on a variety of gene promoters. In the long term, PRKCB RNA interference induces apoptosis in vitro. More importantly, in xenograft mice models, complete impairment of tumor engraftment and even tumor regression were observed upon PRKCB inhibition, highlighting PRKCB as a most valuable therapeutic target. Deciphering PRKCB roles in Ewing sarcoma using expression profiling, we found a strong overlap with genes modulated by EWSR1-FLI1 and an involvement of RPKCB in regulating crucial signaling pathways. Altogether, we show that PRKCB may have two important independent functions and should be considered as highly valuable for understanding Ewing sarcoma biology and as a promising target for new therapeutic approaches in Ewing sarcoma.

Publication Title

Targeting the EWSR1-FLI1 oncogene-induced protein kinase PKC-β abolishes ewing sarcoma growth.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE30649
Detailed transcriptomics analysis of the effect of dietary fatty acids on gene regulation in the murine heart [superseries]
  • organism-icon Mus musculus
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE30495
Detailed transcriptomics analysis of the effect of dietary fatty acids on gene regulation in the murine heart.
  • organism-icon Mus musculus
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Fatty acids comprise the primary energy source for the heart and are mainly taken up via hydrolysis of circulating triglyceride-rich lipoproteins. While most of the fatty acids entering the cardiomyocyte are oxidized, a small portion is involved in altering gene transcription to modulate cardiometabolic functions. So far, no in vivo model has been developed enabling study of the transcriptional effects of specific fatty acids in the intact heart. In the present study, mice were given a single oral dose of synthetic triglycerides composed of one single fatty acid. Hearts were collected 6h thereafter and used for whole genome gene expression profiling. Experiments were conducted in wild-type and PPAR/ mice to allow exploration of the specific contribution of PPAR. It was found that: 1) linolenic acid (C18:3) had the most pronounced effect on cardiac gene expression. 2) The largest similarity in gene regulation was observed between linoleic acid (C18:2) and C18:3. Large similarity was also observed between the synthetic PPAR agonist Wy14643 and docosahexaenoic acid (C22:6). 3) Many genes were regulated by one particular treatment only. Genes regulated by one particular treatment showed large functional divergence. 4) The majority of genes responding to fatty acid treatment were regulated in a PPAR-dependent manner, emphasizing the importance of PPAR in mediating transcriptional regulation by fatty acids in the heart. 5) Several genes were robustly regulated by all or many of the fatty acids studied, mostly representing well-described targets of PPARs (e.g. Acot1, Angptl4, Ucp3). 6) Deletion and activation of PPAR had a major effect on expression of numerous genes involved in metabolism and immunity. Our analysis demonstrates the marked impact of dietary fatty acids on gene regulation in the heart via PPAR.

Publication Title

Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE43162
Expression data from poplar roots under nitrogen limitation
  • organism-icon Populus tremula x populus alba
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

We study the effect of nitrogen limitation on the growth and development of poplar roots. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes driven by low nitrogen in the growth media. We report the effect of nitrogen limitation on the growth and development of poplar roots. Low nitrogen concentration led to increased root elongation followed by lateral root proliferation and finally increased root biomass. These morphological responses correlated with high and specific activation of genes encoding regulators of cell cycle and enzymes involved in cell wall biogenesis, growth and remodeling. Comparative analysis of poplar and Arabidopsis root transcriptomes under nitrogen deficiency indicated many similarities and diversification in the response in the two species. A reconstruction of genetic regulatory network (GRN) analysis revealed a sub-network centered on a PtaNAC1-like transcription factor. Consistent with the GRN predictions, root-specific upregulation of PtaNAC1 in transgenic poplar plants increased root biomass and led to significant changes in the expression of the connected genes specifically under low nitrogen. PtaNAC1 and its regulatory miR164 showed inverse expression profiles during response to LN, suggesting of a micro RNA mediated attenuation of PtaNAC1 transcript abundance in response to nitrogen deprivation.

Publication Title

Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE17218
Encyclopedia of the expression levels of all genes in multiple components of the developing kidney
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE17139
Gene expression profiles of cap mesenchyme and renal vesicle isolated between P0-P4 from Crym-EGFP neonatal transgenic mice using FACS. (GUDMAP Series ID: 28)
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE71343
Control of Peripheral Tolerance by Regulatory T Cell-Intrinsic Notch Signaling
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Notch receptors direct the differentiation of T helper (Th) cell subsets, but their influence on regulatory T (TR) cell responses is obscure. Interruption of Notch signaling in TR cells resulted in a super-regulatory phenotype, with suppression of TR cell Th1 programming and apoptosis as well as Th1 cell responses in systemic inflammation. In contrast, gain of function Notch1 signaling in TR cells resulted in lymphoproliferation, dysregulated Th1 responses and autoimmunity. To determine mechanisms by which Notch signaling may alter TR cell function, we compared the transcriptional profiles of splenic TR cells of Foxp3EGFPCre mice with those of Foxp3EGFPCreR26N1c/N1c (gain of function Notch signaling), Foxp3EGFPCreRBPJ/ (loss of function canonical Notch signaling), and Foxp3EGFPCreR26N1c/N1cRBPJ/ mice (gain of function/canonical loss of function Notch signaling).

Publication Title

Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE17138
Gene expression profiles of renin producing cells in newborn and adult kidney isolated from Renin-YFP transgenic mice using FACS. (GUDMAP Series ID: 29)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE41704
Transcriptional profiling of bulge stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

In adult skin, each hair follicle contains a reservoir of stem cells (the bulge), which can be mobilized to regenerate the new follicle with each hair cycle and to reepithelialize epidermis during wound repair. Here we report new methods that permit their clonal analyses and engraftment and demonstrate the two defining features of stem cells, namely self-renewal and multi-potency. We also show that, within the bulge, there are two distinct populations, one of which maintains basal lamina contact and temporally precedes the other, which is suprabasal and arises only after the start of the first postnatal hair cycle. This spatial distinction endows them with discrete transcriptional programs, but surprisingly, both populations are growth inhibited in the niche but can self-renew in vitro and make epidermis and hair when grafted. These findings suggest that the niche microenvironment imposes intrinsic stemness features without restricting the establishment of epithelial polarity and changes in gene expression.

Publication Title

Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17142
Gene expression profiles of adult visceral epithelium (syn: podocyte layer) isolated from MafB-GFP transgenic mice using FACS. (GUDMAP Series ID: 31)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact