Fat tissue was resected during gastric bypass surgery for management of obesity. All subjects had fasted at least 10 hours before surgery. Subjects with malignancies were excluded. No subjects were taking thiazolidinediones or steroids. None had fasting plasma glucose levels over 120 mg/ dl. One half to 10 g of abdominal subcutaneous (external to the fascia superficialis), mesenteric, and greater omental fat were obtained from each subject. The tissue was collected in Hanks balanced salt solution with bicarbonate, penicillin, and gentamicin. Fat tissue was minced and then digested in HBSS containing 1 mg/ml collagenase and 7.5% fetal bovine serum in a 37*C shaking water bath until fragments were no longer visible and the digest had a milky appearance. Digests were filtered and centrifuged at 800xG for 10 min. The digests were treated with an erythrocyte lysis buffer. Cells were plated in 1:1 Dulbeccos modified Eagles medium:Hams F12 that contained 10% fetal bovine serum and antibiotics at a density of 4 x 104 cells/cm2. After 18 hours cultures were trypsinized until 95% of cells were detached (leaving endothelial cells and macrophages behind) and re-plated. Macrophages were rare (less than 5 per 106 cells, as assessed by phase contrast microscopy) in the re-plated cultures, irrespective of fat depot origin. Plating medium was changed every 2 days until confluence. For differentiation, preadipocytes were treated for 30 days with plating medium (without serum) enriched with 100 nM dexamethasone, 500 nM human insulin, 200 pM triiodothyronine, 0.5 *M rosiglitazone, antibiotics, and 540 *M methylisobutylxanthine (removed after 2 days). Higher rosiglitazone and insulin concentrations did not further enhance differentiation. Medium was changed every 2 days. For the final 2 days, differentiation medium was removed and cells were cultured in plating medium without serum. Undifferentiated preadipocytes were maintained in plating medium until confluence, when serum was removed for 2 days. For telomerase-expressing clones, preadipocytes were isolated and when cells had undergone 7 population doublings, they were transduced with a retrovirus containing the plasmid, pBABE-hTERT-Hygro. This vector expresses the human telomerase reverse transcriptase component (hTERT) driven by the Moloney murine leukemia virus long terminal repeat promoter and a hygromycin resistance sequence driven by the SV40 promoter. The 3 abdominal subcutaneous and 3 omental stably transduced, hygromycin-resistant clones capable of achieving confluence fastest were selected from 38 subcutaneous and 42 omental clones. Telomerase activity in these clones was verified using a PCR-based telomere repeat amplification protocol. RNA was isolated from preadipocytes by the Trizol method. RNA samples were labeled using the standard one-cycle Affymetrix GeneChip Eukaryotic Target Labeling Assay for Expression Analysis. Samples were hybridized for 16 hours at 45 C and 60 rpm, washed and stained according to the standard Affymetrix Antibody Amplification for Eukaryotic Targets protocol, and scanned at 488 nm. Images were quantified and linearly scaled using Affymetrix GeneChip Operating Software 1.1 using default analysis settings.
Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns.
No sample metadata fields
View SamplesThe healthspan of mice is enhanced by selectively killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and burden of age-related chronic diseases.
The Achilles' heel of senescent cells: from transcriptome to senolytic drugs.
Specimen part, Subject
View SamplesUnderstanding how regulatory sequences interact in the context of chromosomal architecture is a central challenge in biology. Chromosome conformation capture revealed that mammalian chromosomes possess a rich hierarchy of structural layers, from multi-megabase compartments to sub-megabase topologically associating domains (TADs), and further down to sub-TAD loop domains. TADs appear to act as regulatory microenvironments by constraining and segregating regulatory interactions across discrete chromosomal regions. However, it is unclear whether other (or all) folding layers share similar properties, or rather TADs constitute a privileged folding scale with maximal impact on the organization of regulatory interactions. Here we present a novel parameter-free algorithm (CaTCH) that identifies hierarchical trees of chromosomal domains in Hi-C maps, stratified through their reciprocal physical insulation which is a simple and biologically relevant property. By applying CaTCH to published Hi-C datasets, we show that previously reported folding layers appear at different insulation levels. We demonstrate that although no structurally privileged folding level exists, TADs emerge as a functionally privileged scale defined by maximal enrichment of CTCF at boundaries, and maximal cell-type conservation. By measuring transcriptional output in embryonic stem cells and neural precursor cells, we show that TADs also maximize the likelihood that genes in a domain are co-regulated during differentiation. Finally, we observe that regulatory sequences occur at genomic locations corresponding to optimized mutual interactions at the scale of TADs. Our analysis thus suggests that the architectural functionality of TADs arises from the interplay between their ability to partition interactions and the genomic position of regulatory sequences. Overall design: The hybrid mouse ESC line F1-21.6 (129Sv-Cast/EiJ), previously described in (Jonkers et al., 2009), were grown on mitomycin C-inactivated MEFs in ES cell media containing 15% FBS (Gibco), 10-4 M b-mercaptoethanol (Sigma), and 1000U/ml of leukaemia inhibitory factor (LIF, Chemicon). Mouse ES cells were differentiated into neural progenitor cells (NPC) as previously described (Conti et al., 2005; Splinter et al., 2011). Total RNAs were prepared by Trizol extraction from the mouse ESC line, and for one NPC clone derived from it. Two biological replicates were collected for ESCs and NPCs. After ribosomal RNA depletion with Ribo-Zero (Illumina), RNA-seq libraries were prepared using ScriptSeq v2 kit (Illumina) following the manufacturer’s instructions. Libraries were prepared in two technical replicates per biological replicate. 50 bp single-end sequencing was performed on Illumina HiSeq 2000 instruments according to manufacturer’s instructions.
Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes.
Specimen part, Subject
View SamplesThe feasibility of longitudinal metastatic biopsies for gene expression profiling in breast cancer is unexplored. Dynamic changes in gene expression can potentially predict efficacy of targeted cancer drugs.
Gene expression profiling of sequential metastatic biopsies for biomarker discovery in breast cancer.
No sample metadata fields
View SamplesOur findings demonstrate beneficial effects of enhancing transactivation function of the ligand-activated polyQ AR and indicate that the SUMOylation pathway may provide new targets for therapeutic intervention. Overall design: We mutated conserved lysines in the polyQ AR that are targeted by SUMO, a modification that inhibits AR transactivation function.
Rescue of Metabolic Alterations in AR113Q Skeletal Muscle by Peripheral Androgen Receptor Gene Silencing.
No sample metadata fields
View SamplesExpansion of a polyglutamine (polyQ) tract in the gene for the androgen receptor (AR) results in partial loss of transactivation function and causes spinobulbar muscular atrophy (SBMA). Modification of AR by small ubiquitin-like modifier (SUMO) reduces AR function in a promoter context-dependent manner.
Disrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor-mediated disease.
Cell line
View SamplesGene expression analysis identified a CRC related signature of differentially expressed genes discriminating patients Responder and Non Responder to radiochemotherapy
A functional biological network centered on XRCC3: a new possible marker of chemoradiotherapy resistance in rectal cancer patients.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesGene expression from cord blood stem cells and respective derived neuronal cells at different times point of differentiation:CD133+ cells;
Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc.
Specimen part, Time
View SamplesThis dataset was used to benchmark the Virtual Inference of Protein-activity by Regulon Readout algorithm (VIPER). Despite recent advances in molecular profiling, proteome-wide assessment of protein activity in individual samples remains a highly elusive target. In stark contrast, protein activity quantitation is increasingly critical to the dissection of key regulatory processes and to the elucidation of biologically relevant mechanisms. Importantly, its value extends to the study of drug activity, as most small molecules inhibit activity of their cognate protein substrates without affecting the proteins or associated mRNAs abundance.
Functional characterization of somatic mutations in cancer using network-based inference of protein activity.
Specimen part, Cell line
View SamplesInduced pluripotent stem (iPS) cells have generated interest for regenerative medicine as they allow for producing patient-specific progenitors in vitro with potential value for cell therapy. In many instances, however, an off-the-shelf approach would be desirable, such as for cell therapy of acute conditions or when the patient's somatic cells are altered as a consequence of chronic disease or aging. Cord blood (CB) stem cells appear ideally suited for this purpose as they are newborn, immunologically immature cells with minimal genetic and epigenetic alterations, and several hundred thousand immunotyped CB units are readily available through a worldwide network of CB banks. Here, we show that CB stem cells can be reprogrammed to pluripotency by retroviral transduction with OCT4, SOX2, KLF4, and c-MYC, in a process that is extremely efficient and fast. The resulting CB-derived iPS (CBiPS) cells are phenotypically and molecularly indistinguishable from human embryonic stem (hES) cells. Furthermore, we show that generation of CBiPS can be efficiently achieved without the use of the c-MYC and KLF4 oncogenes and just by overexpression of OCT4 and SOX2. Our studies set the basis for the creation of a comprehensive bank of HLA-matched CBiPS cells for off-the-shelf applications.
Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2.
Specimen part
View Samples