refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 26 results
Sort by

Filters

Technology

Platform

accession-icon GSE100086
Ppm1f is regulated by stress and associated with anxiety and depression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE100084
Ppm1f is regulated by stress and associated with anxiety and depression [amygdala]
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Ppm1f regulation in the amygdala after acute stress immobilization

Publication Title

Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE100085
Ppm1f is regulated by stress and associated with anxiety and depression [mPFC]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Ppm1f regulation in the medial prefrontal cortex (mPFC) after acute stress immobilization

Publication Title

Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE46819
Inhibitor of apoptosis protein antagonist BV6 potential for new combinatorial treatment strategies in acute myeloid leukemia
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Apoptosis is deregulated in most, if not all, cancers, including hematological malignancies. In this study, we wanted to test whether primary acute myeloid leukemia (AML) samples are sensitive for inhibitor of apoptosis (IAP) protein antagonist treatment in vitro, and which AML subgroup might profit most from such a novel therapeutic strategy. We treated diagnostic samples of 67 adult AML patients with either cytarabine (ara-C) or IAP antagonist BV6 and correlated sensitivity with clinical, cytogenetic and molecular markers, and expression levels of selected genes involved in apoptosis. Primary AML samples showed differential sensitivity to treatment with either ara-C (40% sensitive, 17% intermediate, 43% resistant) or BV6 (51% sensitive, 21% intermediate, 28% resistant). Notably, 69% of ara-C resistant samples showed a good to fair response to IAP inhibition. Furthermore, combination treatment of ara-C with BV6 showed additive effects in most samples. Differences in sensitivity to IAP antagonist treatment correlated with significantly elevated expression levels of TNF and lower levels of XIAP in BV6 sensitive samples, as well as with NPM1 mutations. Gene expression profiling pointed to apoptosis-related pathways, which were specifically induced by IAP inhibition in sensitive samples. Thus, our results suggest IAP inhibition as a potential novel therapeutic option in AML.

Publication Title

Targeting inhibitor of apoptosis proteins by Smac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia.

Sample Metadata Fields

Sex, Age, Treatment

View Samples
accession-icon GSE62533
Inhibitor of apoptosis proteins as promising therapeutic targets in chronic lymphocytic leukemia
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Inhibitor of apoptosis (IAP) proteins are expressed at high levels in CLL cells and may contribute to evasion of cell death leading to poor therapeutic outcome. Of note, prognostic unfavourable cases with e.g. non-mutated VH-status and TP53 mutation responded significantly better to BV6 than samples with unknown or favourable prognosis e.g. 13q deletion. The majority of cases with 17p deletion (10/12) and Fludarabine refractory cases were sensitive to BV6, indicating that BV6 acts independently of the p53 pathway. Importantly, BV6 dose-dependently induced cell death in 28 of 51 (54%) investigated patient samples while B cells from healthy donors were largely unaffected. BV6 also triggered cell death under survival conditions mimicking the microenvironment e.g. by adding CD40 ligand or in conditioned medium. Gene expression profiling identified cell death- and NF-kB-signaling among the top pathways regulated by BV6. This was confirmed by data showing that BV6 causes degradation of cIAP1 and cIAP2 and NF-kB pathway activation. BV6 induced cell death depended on production of reactive oxygen species, since addition of ROS scavengers significantly rescued BV6-triggerd cell death. In contrast, BV6 induced cell death independently of caspase activity, RIP1 activity or TNF-alpha, since zVAD.fmk, necrostatin-1 or TNF-alpha-blocking antibody Enbrel failed to protect against cell death. Of note, transcripts of ROS regulatory proteins were modulated by BV6. Thus, these data have important implications for developing new therapeutic strategies to overcome cell death resistance in CLL especially in poor prognostic subgroups.

Publication Title

Targeting inhibitor of apoptosis proteins by Smac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia.

Sample Metadata Fields

Sex, Age, Treatment

View Samples
accession-icon GSE76012
5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Though obesity is a global epidemic, the physiological mechanisms involved are little understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesized that maternal diet influences fetal 5-HT exposure, which then influences central appetite network development and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant low protein fed rat mothers exhibited elevated serum 5-HT, which was also evident in the placenta and fetal brains at E16.5. This increase was associated with reduced hypothalamic expression of 5-HT2CR - the primary 5-HT receptor influencing appetite. As expected, reduced 5-HT2CR expression was associated with impaired sensitivity to 5-HT-mediated appetite suppression. 5-HT primarily achieves effects on appetite via 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We reveal that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC and that 5-HT2AR mRNA is increased in the hypothalamus of in utero growth restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals are more sensitive to 5-HT2AR agonist-induced appetite suppression. These findings may not only reveal a 5-HT-mediated mechanism underlying programming of obesity susceptibility but also provide a promising means to correct it, via a 5-HT2AR agonist treatment.

Publication Title

5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8510
RAR-PLZF overcomes PLZF-mediated repression of CRABPI contributing to retinoid resistance in t(11;17) APL
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This study supports an active role for PLZF and RAR-PLZF in leukemogenesis, identifies upregulation of CRABPI as a novel mechanism contributing to retinoid resistance and reveals the ability of the reciprocal fusion gene products to mediate distinct

Publication Title

RARalpha-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP032276
High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 56 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina MiSeq, Illumina HiSeq 2000

Description

N6-methyladenosine (m6A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m6A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated 8/8 methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time-course, and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminates a conserved, dynamically regulated methylation program in yeast meiosis, and provides an important resource for studying the function of this epitranscriptomic modification. Overall design: Examination of m6A methylation under various conditions

Publication Title

High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP045499
Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans [RNA-Seq]
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In animals, microRNAs frequently form families with related sequences. The functional relevance of miRNA families and the relative contribution of family members to target repression have remained, however, largely unexplored. Here, we used the C. elegans miR-58 miRNA family, comprised primarily of four highly abundant members: miR-58.1, miR-80, miR-81 and miR-82, as a model to investigate the redundancy of miRNA family members and their impact on target expression in an in vivo setting. Overall design: RNA was extracted from different miR-58 family mutants (mir-58.1, mir-80; mir-58.1 and mir-80; mir-58.1; mir-81-82) and wild-type Bristol C. elegans strain at late L4 stage and submitted to transcriptome sequencing with Illumina HiSeq2000. The goal was to compare miR-58 target RNA expression and system-wide perturbations across various samples.

Publication Title

Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE32944
Identification of miRNA target genes in C. elegans by RIP-chip-SRM
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

RIP-chip-SRM : a New Combinatorial Large Scale Approach Identifies a Set of Translationally Regulated bantam/miR 58 Targets in C. elegans

Publication Title

RIP-chip-SRM--a new combinatorial large-scale approach identifies a set of translationally regulated bantam/miR-58 targets in C. elegans.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact