refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 246 results
Sort by

Filters

Technology

Platform

accession-icon GSE16695
Gene expression data from endothelial cells and leukocytes enriched from transplanted rat hearts
  • organism-icon Rattus norvegicus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Transcriptome analyses of organ transplants have until now usually focused on whole tissue samples containing activation profiles from different cell populations. Here, we enriched endothelial cells from rat cardiac allografts and isografts, establishing their activation profile at baseline and on day 2, 3 and 4 after transplantation. Modulated transcripts were assigned to three categories based on their regulation profile in allografts and isografts. Categories A and B contained the majority of transcripts and showed similar regulation in both graft types, appearing to represent responses to surgical trauma. By contrast, category C contained transcripts that were partly allograft-specific and to a large extent associated with interferon-gamma-responsiveness. Several transcripts were verified by immunohistochemical analysis of graft lesions, among them the matricellular protein periostin which was one of the most highly upregulated transcripts but has not been associated with transplantation previously. In conclusion, the majority of the differentially expressed genes in graft endothelial cells are affected by the transplantation procedure whereas relatively few are associated with allograft rejection.

Publication Title

Genome-wide transcription profile of endothelial cells after cardiac transplantation in the rat.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8687
Inhibition of activation of Sez-4 cell line with IL-2 by Jak kinase inhibitors.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we compared the effects of IL-2, IL-15, and IL-21 on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from the CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 that signal through receptors that share the common gamma chain and the beta chain modulated the expression of >1,000 genes, IL-21 that signals via the receptor also containing gamma chain up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3. However, only IL-2 and IL-15 strongly activated STAT5, PI3K/Akt, and MEK/ERK signaling pathways. In contrast, IL-21 selectively activated STAT3. Whereas all three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3- and Jak1-kinase dependent. These findings document the vastly different impact of IL-2 and IL-15 vs. IL-21 on malignant CD4+ T cells. They also suggest two novel therapeutic approaches to CTCL and, possibly, other CD4+ T cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, NK, and B cells, application of this cytokine to boost an immune response against malignant CD4+ T cells.

Publication Title

Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8685
Activation of Sez-4 cell line with IL-2, IL-15 or IL-21.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study we compared the effects of IL-2, IL-15, and IL-21 on the gene expression, activation of cell signaling pathways, and functional properties of cells derived from the CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 that signal through receptors that share the common gamma chain and the beta chain modulated the expression of >1,000 genes, IL-21 that signals via the receptor also containing gamma chain up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3. However, only IL-2 and IL-15 strongly activated STAT5, PI3K/Akt, and MEK/ERK signaling pathways. In contrast, IL-21 selectively activated STAT3. Whereas all three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3- and Jak1-kinase dependent. These findings document the vastly different impact of IL-2 and IL-15 vs. IL-21 on malignant CD4+ T cells. They also suggest two novel therapeutic approaches to CTCL and, possibly, other CD4+ T cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, NK, and B cells, application of this cytokine to boost an immune response against malignant CD4+ T cells.

Publication Title

Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE85987
Inhibition of endothelial Notch signaling attenuates inflammation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85992
Gene expression data from endothelial cells isolated from DNFB-treated ears of mice with inducible endothelial-specific overexpression of constitutively active Notch1 intracellular domain
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Notch1 is a key regulator of endothelial cell behaviour. This experiment was designed to identify genes regulated by Notch1 signaling in inflammatory activated mouse endothelial cells.

Publication Title

Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39180
Genes regulated/modulated by jagged1 in endothelial cells during inflammation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Proinflammatory activation of endothelial cells leads to recruitment of leukocytes by upregulation of adhesion molecules and presentation of chemoattractants. In response to such activation there is also a strong shift in the endothelial expression of Notch ligands, with downregulation of Dll4 and a upregulation of JAG1. To assess whether Jagged1 would affect the endothelial activation profile, we suppressed JAG1 expression during IL-1-induced activation by means of siRNA and performed a genome-wide transcriptome analysis. Our results show for the first time that Jagged1 modulates the transcription profile of activated endothelial cells and describe data that imply a role for Jagged1 in sharpening the inflammatory profile of the vasculature, giving it an edge towards leukocyte recruitment. These findings imply that Jagged1 might be a potential therapeutic target to attenuate inflammation and reduce tissue damage in inflammatory diseases.

Publication Title

Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85986
Effect of Notch1 on inflammatory activation of human umbilical vein endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Inflammatory activation of endothelial cells enables leukocyte recruitment to tissues. We here investigate how Notch1 signaling affects the transcriptional profile of inflammatory activated human umbilical vein cells.

Publication Title

Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77816
Expression analysis of WT and Zbtb4 -/- mouse primary fibroblasts
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

ZBTB4 is a mammalian transcription factor with Zinc fingers and a BTB/POZ domain, which can bind methylated CpGs, as well as certain unmethylated consensus sequences. ZBTB4 is frequently downregulated in human cancers, but it is unclear whether this is a cause or consequence of transformation. To investigate the role of ZBTB4 in normal and pathological conditions, we generated Zbtb4-/- mice

Publication Title

Loss of the Methyl-CpG-Binding Protein ZBTB4 Alters Mitotic Checkpoint, Increases Aneuploidy, and Promotes Tumorigenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29641
Hypoxia transcriptomic time-series data in three different cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Tumour hypoxia exhibits a highly dynamic spatial and temporal distribution and is associated with increased malignancy and poor prognosis. Assessment of time-dependent gene-expression changes in response to hypoxia may thus provide additional biological insights and help with patient prognosis.

Publication Title

The prognostic value of temporal in vitro and in vivo derived hypoxia gene-expression signatures in breast cancer.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE57061
Expression data for Lck-Cre, Med23flox/flox and Med23flox/flox;Lck-Cre thymocytes +/- 3hr exposure to plate bound anti-CD3 antibody
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

MED23, a subunit of the Mediator coactivator complex, is important for the expression of a subset of MAPK/ERK pathway-dependent target genes; however, the genes in this subset varies between cell types. MAPK/ERK pathway-dependent processes are essential for T-cell development and function, but whether MED23 has a role in this context is unknown. We generated Med23 conditional knockout mice and induced Med23 deletion in early T cell development using the lineage specific Lck-Cre transgene. While the total cell number and distribution of cell populations in the thymuses of Med23flox/flox;Lck-Cre mice were essentially normal, MED23 null T-cells failed to efficiently populate the peripheral lymphoid organs. MED23 null thymocytes displayed decreased expression of the MAPK/ERK-responsive genes Egr1, Egr2, as well as of the membrane glycoprotein Cd52 (CAMPATH-1). MED23 null CD4 single-positive thymocytes also showed decreased expression of KLF2 (LKLF), a T cell master regulatory transcription factor. Indeed, similarities between the phenotypes of mice lacking MED23 or KLF2 in T-cells suggest that KLF2 deficiency in MED23 null T-cells is one of their key defects. Mechanistic experiments using MED23 null MEFs further suggest that MED23 is required for full activity of the MAPK-responsive transcription factor MEF2, which has previously been shown to mediate Klf2 expression. In summary, our data indicate that MED23 has critical roles in enabling T-cells to populate the peripheral lymphoid organs, possibly by potentiating MEF2-dependent expression of the T-cell transcription factor KLF2.

Publication Title

T-cells null for the MED23 subunit of mediator express decreased levels of KLF2 and inefficiently populate the peripheral lymphoid organs.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact