To determine the roles of oncogenic EGFR signaling in gliomagenesis and tumor maintenance, we generated a novel glioma mouse model driven by inducible expression of a mutant EGFR (EGFR*). Genetic suppression of EGFR* induction led to significant tumor regression and prolonged survival. But in spite of the initial response, the tumors relapsed invariably and propagated independent of EGFR*.
Development of Resistance to EGFR-Targeted Therapy in Malignant Glioma Can Occur through EGFR-Dependent and -Independent Mechanisms.
Specimen part
View SamplesThe objective of this study was the assessment of transcriptional dysregulation in particular with regard to B-cell differentiation factors. Most studies focus on cross-section analyses of various leukemia subtypes to identify differentially regulated genes lacking suitable reference models. Here we applied comparative intraindividual transcriptome analysis of B-precursor ALL of childhood, which introduces a side-by-side analysis of leukemic cells and matched normal lymphoblasts from the same individual in complete continuous remission after the end of re-induction therapy. This approach reduces noise by eliminating interindividual variability.
Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6-RUNX1 negative B precursor acute lymphoblastic leukemia.
Specimen part, Subject
View SamplesThis study sought to evaluate the effects of dietary MeHg exposure on adult female yellow perch (Perca flavescens) and zebrafish (Danio rerio) reproduction by relating controlled exposures with subsequent reproductive effects. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, and the use of zebrafish allowed for a detailed analysis of the molecular effects of MeHg. MeHg exposures at environmentally relevant levels were done in zebrafish for a full life cycle, mimicking a realistic exposure scenario, and in adult yellow perch for twenty weeks, capturing early seasonal ovarian development. In zebrafish, several genes involved in reproductive processes were shown to be dysregulated by RNA-seq and QPCR, but no significant phenotypic or physiological changes were observed with ovarian staging, fecundity, or embryo mortality. Yellow perch did not appear to be affected by MeHg, either at a molecular level, as assessed by QPCR of eight genes in the pituitary, liver, and ovary tissue, or a physiological level, as seen with ovarian somatic index, circulating estradiol, and ovarian staging. Lack of impact in yellow perch limits the usefulness of zebrafish as a model and suggests that the reproductive sensitivity to environmentally relevant levels of MeHg differs between yellow perch and zebrafish. Overall design: 12 samples of total RNA isolated from adult zebrafish ovaries were analyzed. Each exposure group (1, 3, and 10 ppm MeHg) had three replicates, as did the vehicle control. Each sample was comprised of pooled total RNA of up to 6 individual fish.
Female reproductive impacts of dietary methylmercury in yellow perch (Perca flavescens) and zebrafish (Danio rerio).
No sample metadata fields
View SamplesWe analysed the genexpression of dental follicle cells (DFCs) after 3 days osteogenic differentiation with BMP2 after transfection with a DLX3 plasmid (pDLX3) and after transfection with an empty plasmid (pEV)
A protein kinase A (PKA)/β-catenin pathway sustains the BMP2/DLX3-induced osteogenic differentiation in dental follicle cells (DFCs).
Specimen part
View SamplesThe goal of the experiment: To characterize the dynamic gene expression profile of engineered human skin in vitro and after grafting, and compare with expression profile of uninjured human skin.
Engineered human skin substitutes undergo large-scale genomic reprogramming and normal skin-like maturation after transplantation to athymic mice.
Specimen part
View SamplesMCF7 and BT474 cell lines were exposed to LTED culture for 0 and 2 days, 6 weeks and 10 months and monitored for changes in gene expression
Clinical instability of breast cancer markers is reflected in long-term in vitro estrogen deprivation studies.
Cell line, Treatment, Time
View SamplesInvasion of cytotrophoblasts into uterine tissues is essential for placental development. To identify molecules regulating trophoblast invasion, mRNA signatures of purified villous (CTB, poor invasiveness) and extravillous (EVT, high invasiveness) trophoblasts isolated from first trimester human placentae and villous explant cultures, respectively, were compared using GeneChip analyses yielding 991 invasion/migration related transcripts. Several genes involved in physiological and pathologic cell invasion, including ADAM-12,-19,-28 as well as Spondin-2, were upregulated in EVT. Pathway prediction analyses identified several functional modules associated with either the invasive or the non-invasive trophoblast phenotype. One of the genes which were downregulated in the invasive mRNA pool, heme oxygenase-1 (HO-1), was selected for functional analyses. Real-time PCR analyses, Western blottting, and immunofluorescene of first trimester placentae and differentiating villous explant cultures demonstrated downregulation of HO-1 in invasive EVT as compared to CTB. Modulation of HO-1 expression in loss-of as well as gain-of function cell models (BeWo and HTR8/SVneo, respectively) demonstrated an inverse relationship of HO-1 expression with trophoblast migration in transwell and wound healing assays. Importantly, HO-1 expression led to an increase in protein levels and activity of the nuclear hormone receptor PPARgamma. Pharmacological inhibition of PPARgamma abrogated the inhibitory effects of HO-1 on trophoblast migration. Collectively, our results demonstrate that gene expression profiling of EVT and CTB can be used to unravel novel regulators of cell invasion. Accordingly, we identify heme oxygenase-1 as a negative regulator of trophoblast motility acting via upregulation of PPARgamma.
Identification of novel trophoblast invasion-related genes: heme oxygenase-1 controls motility via peroxisome proliferator-activated receptor gamma.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
An immediate-late gene expression module decodes ERK signal duration.
Specimen part, Cell line
View SamplesWe integrate experimental data and mathematical modelling to unveil how ERK signal duration is relayed to mRNA dynamics.
An immediate-late gene expression module decodes ERK signal duration.
Cell line
View SamplesThe oncogenic mechanisms and tumour biology underpinning Clear Cell Sarcoma of Kidney (CCSK), the second commonest paediatric renal malignancy, are poorly understood and currently therapy depends heavily on Doxorubicin with cardiotoxic side-effects. Previously, we characterised the balanced t(10;17)(q22;p13) chromosomal translocation, identified at that time as the only recurrent genetic aberration in CCSK. This translocation results in an in-frame fusion of the YWHAE (encoding 14-3-3e) and NUTM2 genes, with a somatic incidence of 12%. Clinico-pathological features of that cohort suggested that this aberration might be associated with higher stage and grade disease. Since no primary CCSK cell line exists, we generated various stably transfected cell lines containing doxycycline-inducible HA-tagged-YWHAE-NUTM2, in order to study the effect of expressing this transcript. 14-3-3e-NUTM2-expressing cells exhibited significantly greater cell migration compared to mock-treated controls. Gene and protein expression studies conducted in parallel on this model system suggested dysregulation of signalling pathways as a basis to the migration changes. Importantly, by blocking these signalling pathways using anti-EGFR, anti-IGF1R and anti-PDGFa neutralising antibodies, the migratory advantage conferred by transcript expression was abrogated. These results support 14-3-3e-NUTM2 expression as a contributor to CCSK tumorigenesis and provide avenues for the exploration of novel therapeutic approaches in CCSK.
Dysregulated mitogen-activated protein kinase signalling as an oncogenic basis for clear cell sarcoma of the kidney.
Disease, Cell line
View Samples