The human bone marrow (BM) gives rise to all distinct blood cell lineages, including CD1c+ and CD141+ myeloid dendritic cells (DC) and monocytes. These cell subsets are also present in peripheral blood (PB) and lymphoid tissues. However, the difference between the BM and PB compartment in terms of differentiation state and immunological role of DC is not yet known. The BM may represent both a site for development as well as a possible effector site and so far, little is known in this light with respect to different DC subsets. Using genome-wide transcriptional profiling we found clear differences between the BM and PB compartment and a location-dependent clustering for CD1c+ and CD141+ was demonstrated. DC subsets from BM clustered together and separate from the corresponding subsets from PB, which similarly formed a cluster. In BM, a common proliferating and immature differentiating state was observed for the two DC subsets, whereas DC from the PB showed a more immune-activated mature profile. In contrast, BM-derived slan+ non-classical monocytes were closely related to their PB counterparts and not to DC subsets, implying a homogenous prolife irrespective of anatomical localization. Additional functional tests confirmed these transcriptional findings. DC-like functions were prominently exhibited by PB DC. They surpassed BM DC in maturation capacity, cytokine production and induction of CD4+ and CD8+ T cell proliferation. This first study on myeloid DC in healthy human BM offers new information on steady-state DC biology and could potentially serve as a starting point for further research on these immune cells in healthy conditions as well as in diseases.
Human Bone Marrow-Derived Myeloid Dendritic Cells Show an Immature Transcriptional and Functional Profile Compared to Their Peripheral Blood Counterparts and Separate from Slan+ Non-Classical Monocytes.
Specimen part
View SamplesAbstract: Human 6-sulfo LacNac (slan)+ cells have been subject to a paradigm debate. They have previously been classified as a distinct dendritic cell (DC) subset. However, evidence has emerged that they may be more related to monocytes than to DC. To gain deeper insight into the functional specialization of slan+ cells, we have compared them with both conventional myeloid DC subsets (CD1c+ and CD141+) in human peripheral blood. Using genome-wide transcriptional profiling as well as extensive functional tests, we clearly show that slan+ cells form a distinct, non-DC-like, population. They cluster away from both DC subsets and their gene expression profile evidently suggests involvement in distinct inflammatory processes. An extensive comparison with existing genomic data sets also strongly confirmed the relationship of slan+ with the monocytic compartment rather than with DC. From a functional perspective, their ability to induce CD4+ and CD8+ T cell proliferation is relatively low. Combined with the finding that antigen presentation by MHC class II is at the top of under-represented pathways in slan+ cells, this points to a minimal role in directing adaptive T cell immunity. Rather, the higher expression of complement receptors on their cell surface, together with their high secretion of IL-1 and IL-6, imply a specific role in innate inflammatory processes, which is consistent with their recent identification as non-classical monocytes. This study extends our knowledge on DC/monocyte subset biology under steady state conditions and contributes to our understanding of their role in immune-mediated diseases and their potential use in immunotherapeutic strategies.
Transcriptional profiling reveals functional dichotomy between human slan<sup>+</sup> non-classical monocytes and myeloid dendritic cells.
Specimen part
View SamplesHuntington’s disease (HD) is an autosomal dominant neurodegenerative disease whose predominant neuropathological signature is the selective loss of medium spiny neurons in the striatum. Despite this selective neuropathology, the mutant protein (huntingtin) is found in virtually every cell so far studied, and, consequently, phenotypes are observed in a wide range of organ systems both inside and outside the central nervous system. We, and others, have suggested that peripheral dysfunction could contribute to the rate of progression of striatal phenotypes of HD. To test this hypothesis, we lowered levels of huntingtin by treating mice with antisense oligonucleotides (ASOs) targeting the murine Huntingtin gene. To study the relationship between peripheral huntingtin levels and striatal HD phenotypes, we utilized a knock-in model of the human HD mutation (the B6.HttQ111/+ mouse). We treated mice with ASOs from 2-10 months of age, a time period over which significant HD-relevant signs progressively develop in the brains of HttQ111/+ mice. Peripheral treatment with ASOs led to persistent reduction of huntingtin protein in peripheral organs, including liver (64% knockdown), brown adipose (66% knockdown), and white adipose tissues (71% knockdown). This reduction was not associated with alterations in the severity of HD-relevant signs in the striatum of HttQ111/+ mice at the end of the study, including transcriptional dysregulation, the accumulation of neuronal intranuclear inclusions, and behavioral changes such as subtle hypoactivity and reduced exploratory drive. These results suggest that the amount of peripheral reduction achieved in the current study does not significantly impact the progression of HD-relevant signs in the central nervous system. Overall design: HttQ111/+ and Htt+/+ mice were given weekly intraperitoneal injections of Htt ASO, control ASO, or saline from 2 to 10 months of age. Striatal mRNA was sequenced from and N of 5-6 per arm (N=35 total).
Peripheral huntingtin silencing does not ameliorate central signs of disease in the B6.HttQ111/+ mouse model of Huntington's disease.
Sex, Cell line, Treatment, Subject
View SamplesTranslating ribosome affinity purification (TRAP) was performed on spinal cord dissections pooled from 3-4 mice 21 days post birth that were positive for the eGFP-L10A fusion ribosomal marker protein under the expression of either the Chat promoter (Tg(Chat-EGFP/Rpl10a)DW167Htz) or the Snap25 promoter (Tg(Snap25-EGFP/Rpl10a)JD362Jdd). RNA-sequencing was performed on both TRAP and pre-immunoprecipitation (PreIP) control RNA samples. Overall design: Three replicates of PreIP and TRAP for two transgenic lines.
MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models.
Specimen part, Cell line, Subject
View SamplesCross-linking and immunoprecipitation coupled with high-throughput sequencing was used to identify binding sites within 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein which when mutated causes Amyotrophic Lateral Sclerosis (ALS). Use of massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs are changed (including Fus/Tls, progranulin, and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events are detected (including in sortilin, the receptor for progranulin), following depletion of TDP-43 from adult brain with antisense oligonucleotides. RNAs whose levels are most depleted by reduction in TDP-43 are derived from genes with very long introns and which encode proteins involved in synaptic activity. Lastly, TDP-43 was found to auto-regulate its synthesis, in part by directly binding and enhancing splicing of an intron within the 3’ untranslated region of its own transcript, thereby triggering nonsense mediated RNA degradation. Overall design: RNAseq in control and Tdp-43 knockdown mouse striatum
Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43.
No sample metadata fields
View SamplesCross-linking and immunoprecipitation coupled with high-throughput sequencing was used to identify binding sites within 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein which when mutated causes Amyotrophic Lateral Sclerosis (ALS). Use of massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs are changed (including Fus/Tls, progranulin, and other transcripts encoding neurodegenerative disease-associated proteins) and 965 altered splicing events are detected (including in sortilin, the receptor for progranulin), following depletion of TDP-43 from adult brain with antisense oligonucleotides. RNAs whose levels are most depleted by reduction in TDP-43 are derived from genes with very long introns and which encode proteins involved in synaptic activity. Lastly, TDP-43 was found to auto-regulate its synthesis, in part by directly binding and enhancing splicing of an intron within the 3’ untranslated region of its own transcript, thereby triggering nonsense mediated RNA degradation. Overall design: CLIP of Tdp-43 in 8 week mouse brain.
Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43.
No sample metadata fields
View SamplesWe demonstrate that the versatile environmental bacterium Pseudomonas aeruginosa adapts a virulence phenotype after serial passage in Galleria mellonella as an invertebrate model host. The virulence phenotype was not linked to the acquisition of genetic variations and was sustained for several generations, despite cultivation of the ex vivo virulence-adapted P. aeruginosa cells under non-inducing rich medium conditions. Transcriptional reprogramming seemed to be induced by a host-specific food source as reprogramming was also observed upon cultivation of P. aeruginosa in medium supplemented with polyunsaturated long-chain fatty acids. Methods : mRNA profiles were generated for Pseudomonas aerugionsa samples derived from LB-cultures grown to an OD600 =2. The removal of ribosomal RNA was performed using the Ribo-Zero Bacteria Kit (Illumina) and cDNA libraries were generated with the ScriptSeq v2 Kit (Illumina) . The samples were sequenced in single end mode on an Illumina HiSeq 2500 device and mRNA reads were trimmed and mapped to the NC_008463.1 (PA14) reference genome from NCBI using Stampy pipeline with defaut settings. Overall design: Isolate CH2658 was subjected to in vivo and in vitro evolution experiments in this study. This isolate was obtained from the lab of G. Gastmeier, Charite Berlin, Germany. The in vivo passages (using G. mellonella) are named CH2658 I-IV corresponding to passages 1 4. The last passage CH2658 IV corresponds to the “evolved strain” and was passaged in LB (four days, two passages a day) to generate revertants which are referred to as CH2658 Rev1-4 corresponding to samples from day1-4. The last passage CH2658 Rev4 is called “revertant”. Additionally, the clinical isolate was passaged under in vitro conditions in the presence of linolenic acid (Roth) with (CH2658 Lil+P) and without paraffin (CH2658 Lil). As controls, CH2658 was passaged in LB (CH2658 LB) and in LB supplemented with paraffin (CH2658 LB+P). The in vitro passage experiment was conducted for four days and two passages a day.
Establishment of an induced memory response in Pseudomonas aeruginosa during infection of a eukaryotic host.
Subject
View SamplesPurpose: The goal of this study was to use RNA Seq to explore whether and to what extent genetic heterogeneity would shape the transcriptional profile in the environment of the CF lung Methods : mRNA profiles were generated for Pseudomonas aerugionsa samples derived from explanted lung tissue or pure cultures isolated from the same lung regions by deep sequencing. To enrich the bacterial RNA MicrobeEnrich Kit (Ambion) was used. The removal of ribosomal RNA was performed using the Ribo-Zero Bacteria Kit (Illumina) and cDNA libraries were generated with the ScriptSeq v2 Kit (Illumina) . The samples were sequenced in single end mode on an Illumina HiSeq 2500 device and mRNA reads were trimmed and mapped to the PAO1 NC_002516 reference genome from NCBI using Stampy pipeline with defaut settings. Overall design: mRNA profiles either from Pseudomonas aeruginosa containing explanted lung tissue from a single patient from various regions of the lung or pure P. aeruginosa liquid cultures grown in LB at 37C from the same lung regions as the ex vivo samples were generated and deep sequenced using Illumina HiSeq 2500.
Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung.
Subject
View SamplesNeoadjuvant chemotherapy has been shown to be equivalent to post-operative treatment for breast cancer, and allows for assessment of chemotherapy response. In a pilot trial of docetaxel (T) and capecitabine (X) neoadjuvant chemotherapy for Stage II/III BC, we assessed correlation between baseline gene expression and tumor response to treatment, and examined changes in gene expression associated with treatment. Patients received 4 cycles of TX. Tumor tissue obtained from Mammotome core biopsies pretreatment (BL) and post-Cycle 1 (C1) of TX was flash frozen and stored at -70C until processing. Gene expression analysis utilized Affymetrix HG-U133 Plus 2.0 GeneChip arrays. Statistical analysis was performed using BRB Array Tools after RMA normalization. Gene ontology (GO) pathway analysis used random variance t-tests with a significance level of p<0.005. For gene categories identified by GO pathway analysis as significant, expression levels of individual genes within those pathways were compared between classes using univariate t-tests; those genes with significance level of p<0.05 were reported.
Gene expression pathway analysis to predict response to neoadjuvant docetaxel and capecitabine for breast cancer.
Specimen part, Time
View SamplesThe original objectives of the study were to identify surface markers specifically expressed in motor neurons. We now use the data to profile the expression of Cdk family members in motor neurons.
Dual Inhibition of GSK3β and CDK5 Protects the Cytoskeleton of Neurons from Neuroinflammatory-Mediated Degeneration In Vitro and In Vivo.
Specimen part
View Samples