Imatinib has become the current standard therapy for patients with chronic myelogenous leukaemia (CML). For a better understanding of the Imatinib-related molecular effects in vivo, we assessed gene expression profiles of Philadelphia Chromosome positive (Ph+) CD34+ cells from peripheral blood of 6 patients with de novo CML in chronic phase. After 7 days of treatment with Imatinib the Ph+ CD34+ cells were reassessed to look for changes in the transcriptome. The expression level of 303 genes was significantly different comparing the transcriptome of the Ph+ CD34+ cells before and after 7 days of Imatinib therapy (183 down-regulated, 120 up-regulated, lower bound 1.2-fold). For a substantial number of genes governing cell cycle and DNA replication, the level of expression significantly decreased (CDC2, RRM2, PCNA, MCM4). On the other hand, therapy with Imatinib was associated with an increase of genes related to adhesive interactions, such as L-selectin or CD44. A group of 8 genes with differential expression levels were confirmed using a gene specific quantitative real-time PCR. Thus, during the first week of treatment, Imatinib is preferentially counteracting the bcr-abl induced effects related to a disturbed cell cycle and defective adhesion of leukemic Ph+ CD34+ cells.
Early in vivo changes of the transcriptome in Philadelphia chromosome-positive CD34+ cells from patients with chronic myelogenous leukaemia following imatinib therapy.
No sample metadata fields
View SamplesWe found that composition of cell subsets within the CD34+ cell population is markedly altered in chronic phase (CP) chronic myeloid leukemia (CML). Specifically, proportions and absolute cell counts of common myeloid progenitors (CMP) and megakaryocyte-erythrocyte progenitors (MEP) are significantly greater in comparison to normal bone marrow whereas absolute numbers of hematopoietic stem cells (HSC) are equal. To understand the basis for this, we performed gene expression profiling (Affymetrix HU-133A 2.0) of the distinct CD34+ cell subsets from six patients with CP CML and five healthy donors. Euclidean distance analysis revealed a remarkable transcriptional similarity between the CML patients' HSC and normal progenitors, especially CMP. CP CML HSC were transcriptionally more similar to their progeny than normal HSC to theirs, suggesting a more mature phenotype. Hence, the greatest differences between CP CML patients and normal donors were apparent in HSC including downregulation of genes encoding adhesion molecules, transcription factors, regulators of stem-cell fate and inhibitors of cell proliferation in CP CML. Impaired adhesive and migratory capacities were functionally corroborated by fibronectin detachment analysis and transwell assays, respectively. Based on our findings we propose a loss of quiescence of the CML HSC on detachment from the niche leading to expansion of myeloid progenitors.
The hematopoietic stem cell in chronic phase CML is characterized by a transcriptional profile resembling normal myeloid progenitor cells and reflecting loss of quiescence.
No sample metadata fields
View SamplesThese data, combined with other cohorts (GSE6532, GSE12093, and qRT-PCR based cohorts), was used to construct the EP algorithm, which predicts the likelihood of developing of a distant recurrence of early stage breast cancer under endocrine treatment. In addition, EPclin, a combination of the EP score, the nodal status and the tumor size, was constructed.
A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors.
No sample metadata fields
View SamplesWe compared splenic Va14i NKT cells from C57BL/6 control mice and from mice injected 4 weeks earlier intravenously with 4ug/mouse of the iNKT cell antigen alpha-galactosylceramide (aGalCer). These mice were either left unstimulated or were stimulated with 1ug/mouse aGalCer i.v.. All mice were female and 8 weeks of age at the beginning of the experiment. Va14i NKT cells were enriched via magnetic selection and cell sorted for TCRb+ CD1d/aGalCer-tetramer+. Total RNA were prepared using a Qiagen RNeasy mini kit. IVT probe generation and hybridization to Affymetrix Mouse Genome 430 2.0 arrays was carried out by the Veterans Medical Research Foundation GeneChipTM Microarray located at UCSD.
IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset.
Sex, Age, Specimen part, Treatment
View SamplesWe sought to identify genes regulated by the transcription factor Th-POK (Zbtb7b) in liver Va14i NKT cells, by RNA microarray analysis of global gene expression in Va14i NKT cells from mice homozygous for the Th-POK-inactivating hd point mutation as compared with the same cell population isolated from heterozygous or wild-type age-matched mice.
The transcription factor Th-POK negatively regulates Th17 differentiation in Vα14i NKT cells.
No sample metadata fields
View SamplesPrevious studies indicate that the triterpene glycoside actein from the herb black cohosh inhibits growth of human breast cancer cells. This study seeks to identify genes altered in human breast cancer cells by treatment with actein, using gene expression analysis. We treated MDA-MB-453 human breast cancer cells with actein at 2 doses, 20 or 40 g/mL, for 6 or 24 h. We identified 5 genes that were activated after each of the treatments that are known to play a role in cellular responses to diverse stresses, including the DNA damage and unfolded protein responses. In addition, four genes that mediate the integrated stress response (ISR), including activating transcription factor 4, were induced under at least one of the 4 treatment conditions. We used hierarchical clustering to define clusters comprising patterns of gene expression. Two ISR genes, activating transcription factor 3 (ATF3) and DNA damage- inducible transcript 3, and lipid biosynthetic genes were activated after exposure to actein at 40 g/mL for 6 h, whereas the cell cycle genes cyclin E2 and cell division cycle 25A were repressed. Our results suggest that actein induces 2 phases of the ISR, the survival phase and the apoptotic phase, depending on the dose and duration of treatment. We confirmed the results of gene expression analysis with real-time RT-PCR for 18 selected genes and Western blot analysis for ATF3. Since actein activated transcription factors that enhance apoptosis, and repressed cell cycle genes, it may be useful in the prevention and therapy of breast cancer.
The growth inhibitory effect of actein on human breast cancer cells is associated with activation of stress response pathways.
No sample metadata fields
View SamplesNatural killer T (NKT) cells have immune stimulatory or inhibitory effects on the immune response that are context-dependent. This may be attributed in part to the existence of functional NKT cell subsets; however, these functional subsets have only been characterized on the basis of differential expression of a few transcription factors and cell surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic and epigenomic levels, and by single-cell RNA sequencing. Our data indicate that despite their similar antigen specificity, the functional NKT cell subsets are highly divergent populations characterized by many gene expression and epigenetic differences. Therefore the thymus imprints innate-like NKT cells with novel combinations of properties, including differences in proliferative capacity, homing, and effector functions that were not previously anticipated. Overall design: Analysis of single cell transcriptomic heterogeneity in mouse Va14 iNKT thymocyte subsets (NKT1, NKT2, NKT17 and NKT0). Samples were generated from individual experiment using a pool of thymocytes prepared from five five-week old C57BL/6J females. NKT cells subtypes were isolated from thymuses and directly sorted by flow cytometry into lysis buffer (96 well plate single cell sort). The preparation of samples occurred in 2 different batches (both having a equal representation of the different cell populations).
Innate-like functions of natural killer T cell subsets result from highly divergent gene programs.
Sex, Age, Specimen part, Cell line, Subject
View SamplesThe association between hyper-inflammatory states and numerous diseases is widely recognized, but our understanding of the molecular strategies that have evolved to prevent uncontrolled activation of inflammatory responses remains incomplete. Here, we report a critical, non-transcriptional role of GPS2 as a guardian against hyperstimulation of TNFA-induced gene program. GPS2 cytoplasmic actions are required to specifically modulate RIP1 ubiquitylation and JNK activation by inhibiting TRAF2/Ubc13 enzymatic activity. In vivo relevance of GPS2 anti-inflammatory role is confirmed by inhibition of TNFA target genes in macrophages and by improved insulin signaling in the adipose tissue of aP2-GPS2 transgenic mice. As the non-transcriptional role is complemented by GPS2 functioning as positive and negative cofactor for nuclear receptors, in vivo overexpression also results in elevated circulating level of resistin and development of hepatic steatosis. Together, these studies define GPS2 as a molecular guardian required for precise control of inflammatory responses involved in immunity and homeostasis. Overall design: RNA-sequencing of polyA selected RNA molecules in 293T cells and ChIP-seq of GPS2, TBL1, and NCOR.
A protective strategy against hyperinflammatory responses requiring the nontranscriptional actions of GPS2.
No sample metadata fields
View SamplesSubstantial evidence supports the hypothesis that enhancers are critical regulators of cell type determination, orchestrating both positive and negative transcriptional programs; however, the basic mechanisms by which enhancers orchestrate interactions with cognate promoters during activation and repression events remain incompletely understood. Here we report the required actions of the LIM domain binding protein, LDB1/CLIM2/NLI, interacting with the enhancer binding protein, ASCL1, to mediate looping to target gene promoters and target gene regulation in corticotrope cells. LDB1-mediated enhancer:promoter looping appears to be required for both activation and repression of these target target gene promoter genes. While LDB1-dependend activated genes are regulated at the level of transcriptional initiation, the LDB1-dependent repressed transcription units appear to be regulated primarily at the level of promoter pausing, with LDB1 regulating recruitment of MTA2, a component of the NuRD complex, on these negative enhancers, required for the repressive enhancer function. These results indicate that LDB1-dependent looping events can deliver repressive cargo to cognate promoters to mediate promoter pausing events in a pituitary cell type. Overall design: Global Run On (GRO) assay followed by high throughput sequencing (GRO-seq)
Enhancer-bound LDB1 regulates a corticotrope promoter-pausing repression program.
No sample metadata fields
View SamplesWe performed gene expression microarray comparing Osx-mCherry cells and Ocn-Topaz cells isolated from the OsxCre-mCherry;OcnCre-Topaz double transgenic mice by flow cytometry.
Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow.
Specimen part
View Samples