refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 116 results
Sort by

Filters

Technology

Platform

accession-icon GSE31102
Expression data from GW8510 treatment of pancreatic cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Expression of insulin in terminally differentiated non-beta pancreatic cell types could be important for treating type-1 diabetes. We observed that the kinase inhibitor GW8510 up-regulated insulin expression in mouse pancreatic alpha cells.

Publication Title

GW8510 increases insulin expression in pancreatic alpha cells through activation of p53 transcriptional activity.

Sample Metadata Fields

Cell line, Compound

View Samples
accession-icon GSE36379
Expression data from mouse pancreatic cell lines treated with chromatin-targeting small molecules
  • organism-icon Mus musculus
  • sample-icon 594 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

We measured the genome-wide expression changes induced by 29 compounds targeting HDACs, DNMTs, histone lysine methyltransferases (HKMTs), and protein arginine methyltransferases (PRMTs) in pancreatic - and -cell lines.

Publication Title

Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP047459
NOTCH1 activation in breast cancer confers sensitivity to inhibition of SUMOylation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Breast cancer is genetically heterogeneous, and recent studies have underlined a prominent contribution of epigenetics to the development of this disease. To uncover new synthetic lethalities with known breast cancer oncogenes, we screened an epigenome-focused short hairpin RNA library on a panel of engineered breast epithelial cell lines. Here we report a selective interaction between the NOTCH1 signaling pathway and the SUMOylation cascade. Knockdown of the E2-conjugating enzyme UBC9 (UBE2I) as well as inhibition of the E1-activating complex SAE1/UBA2 using ginkgolic acid impairs the growth of NOTCH1-activated breast epithelial cells. We show that upon inhibition of SUMOylation NOTCH1-activated cells proceed slower through the cell cycle and ultimately enter apoptosis. Mechanistically, activation of NOTCH1 signaling depletes the pool of unconjugated small ubiquitin-like modifier 1 (SUMO1) and SUMO2/3 leading to increased sensitivity to perturbation of the SUMOylation cascade. Depletion of unconjugated SUMO correlates with sensitivity to inhibition of SUMOylation also in patient-derived breast cancer cell lines with constitutive NOTCH pathway activation. Our investigation suggests that SUMOylation cascade inhibitors should be further explored as targeted treatment for NOTCH-driven breast cancer. Overall design: We treated MCF10A and NOTCH1 cells with either DMSO or ginkgolic acid 30 uM for 3 days. Two replicates have been analysed for each condition.

Publication Title

NOTCH1 activation in breast cancer confers sensitivity to inhibition of SUMOylation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP127343
Systematic functional characterization of BAF mutations yields novel intra-complex synthetic lethalities [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Aberrations in genes coding for subunits of the BAF chromatin remodeling complex are highly abundant in human cancers. Currently, it is not understood how these loss-of-function mutations contribute to cancer development and how they can be targeted therapeutically. The cancer type specific occurrence patterns of certain subunit mutations suggest subunit-specific effects on BAF complex function, possibly by the formation of aberrant residual complexes. Here, we systematically characterize the effects of individual subunit loss on complex composition, chromatin accessibility and gene expression in a panel of knock-out cell lines deficient for 22 targetable BAF subunits. We observe strong, specific and often discordant alterations dependent on the targeted subunit and show that these explain intra-complex co-dependencies, including the novel synthetic lethal interactions SMARCA4-ARID2, SMARCA4-ACTB and SMARCC1-SMARCC2. These data provide insights into the role of different BAF subcomplexes in genome-wide chromatin organization and suggest novel approaches to therapeutically target BAF mutant cancers. Overall design: RNA-seq samples for knockouts of BAF complex in the HAP1 cell line.

Publication Title

Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP096656
Crizotinib v. DMSO in SW480 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

SW480 cells were treated with 2uM crizotinib for 72h (versus DMSO) Overall design: Examination of differential up- or down-regulated genes after crizotinib treatment

Publication Title

Global survey of the immunomodulatory potential of common drugs.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP050365
A common cell state in Triple Negative Breast Cancers represents a druggable vulnerability
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

A basal (MDAMB468) and luminal (ZR75-1) cell line were treated with DMSO or PKC412 for 6h Overall design: 2 DMSO and 3 PKC412 treated samples for each cell line

Publication Title

Targeting a cell state common to triple-negative breast cancers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42913
A comprehensive gene expression analysis of resistance formation upon metronomic cyclophosphamide therapy
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Resistance formation is one of the major hurdles in cancer therapy. Metronomic anti-angiogenic treatment of xenografted prostate cancer tumors in SCID mice with cyclophosphamide (CPA) results in the appearance of resistant tumors. To investigate the complex molecular changes occurring during resistance formation, we performed a comprehensive gene expression analysis of the resistant tumors in vivo. We observed a multitude of differentially expressed genes, e.g., PASD1, ANXA3, NTS or PLAT, when comparing resistant to in vivo passaged tumor samples. Furthermore, tumor cells from in vivo and in vitro conditions showed a significant difference in target gene expression. We assigned the differentially expressed genes to functional pathways like axon guidance, steroid biosynthesis and complement and coagulation cascades. Most of the genes were involved in anti-coagulation, indicating its possible importance. Upregulation of anti-coagulatory ANXA3 and PLAT and downregulation of PLAT inhibitor SERPINA were validated by qPCR. In contrast, coagulation factor F3 was upregulated, accompanied by the expression of an altered gene product. These findings give insights into the resistance mechanisms of metronomical CPA treatment suggesting an important role of anti-coagulation in resistance formation.

Publication Title

A Comprehensive Gene Expression Analysis of Resistance Formation upon Metronomic Cyclophosphamide Therapy.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE3311
Effect of chronic ethanol consumption on rat pancreas
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Male Wistar rats weighing 90-120 g were acclimatized for one week and fed standard laboratory chow, at which time the animals were divided into two groups. Animals were then pair-fed for 8 weeks a regular laboratory chow and water ad libitum or Lieber-DeCarli diet (36% calories from ethanol). Control animals received the iso-caloric amount of dextrose to replace ethanol. After 8 weeks of differential feeding rats were euthanized, the pancreas immediately dissected and stored at -80?C until RNA isolation. RNA expression was analyzed using Affymetrix RAE230A gene chips

Publication Title

Long-term ethanol consumption alters pancreatic gene expression in rats: a possible connection to pancreatic injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP079357
Artemisinins target GABA receptor signaling to induce alpha to beta cell transdifferentiation
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina HiSeq 3000

Description

Type 1 diabetes is characterized by the destruction of pancreatic beta cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types including glucagon-producing alpha cells. In a genetic model, overexpression of the master regulatory transcription factor Pax4 or loss of its counterplayer Arx are sufficient to induce the conversion of alpha cells to functional beta-like cells. Here we identify artemisinins as small molecules that functionally repress Arx and induce beta-cell characteristics in alpha cells. We show that the protein gephyrin is the mammalian target of these antimalaria drugs. Finally, we demonstrate that gephyrin-mediated enhancement of GABAA receptor signaling is the mechanism of action of these molecules in pancreatic transdifferentiation. Our results indicate that gephyrin is a novel druggable target for the regeneration of pancreatic beta cell mass from alpha cells. Overall design: Transcriptional dissection of Artemether treated, human pancreatic islets of one donor using single-cell RNA-seq

Publication Title

Artemisinins Target GABA<sub>A</sub> Receptor Signaling and Impair α Cell Identity.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP078950
Artemisinins target GABAA receptor signaling and impair alpha cell identity
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Type 1 diabetes is characterized by the destruction of pancrea tic beta cells, and generating new insulin-producing cells from other cell types is a major aim of regenerative medicine. One promising approach is transdifferentiation of developmentally related pancreatic cell types including glucagon-producing alpha cells. In a genetic model, loss of the master regulatory transcription factor Arx is sufficient to induce the conversion of alpha cells to functional beta-like cells. Here we identify artemisinins as small molecules that functionally repress Arx by causing its translocation to the cytoplasm. We show that the protein gephyrin is the mammalian target of these antimalaria drugs, and that enhancement of GABAA receptor signaling contributes to the mechanism of action of these molecules in pancreatic transdifferentiation. Our results in zebrafish, rodents and primary human pancreatic islets indicate that gephyrin is a novel druggable target for the regeneration of pancreatic beta cell mass from alpha cells. Overall design: There are two parts in the transcriptional study on mouse cell lines in this project. One part is on Min6-ARX inducible cells with different induction time of Dox. This is done in three different clones. The other part is on alpha-TC1 cells. This is done in one concentration of Artemether, one time point and two biological repeats.

Publication Title

Artemisinins Target GABA<sub>A</sub> Receptor Signaling and Impair α Cell Identity.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact