Cap analysis of gene expression (CAGE) and massive parallel sequencing were used to profile the promoterome of aged human brains from five regions, namely: caudate, frontal cortex, hippocampus, putamen and temporal cortex. Overall design: 25 RNA libraries from post-mortem brain tissue (five caudate, five frontal, 5 hippocampus, 5 putamen, five temporal RNA libraries from seven individuals) were processed using CAGE protocol and CAGE tags derived from the 25 libraries were sequenced with Illumina.
Regional differences in gene expression and promoter usage in aged human brains.
Specimen part, Subject
View SamplesThis study investigated gene expression changes in whole blood samples obtained from donors diagnosed with major depressive disorder (MDD) compared to healthy controls. Micro-array data were available from whole blood on patients with MDD (N=128, 64 with generalised anxiety disorder, diagnosed by the MINI questionnaire, and 64 without anxiety disorder) and healthy controls (N=64). RNA was isolated from all samples using the standard PAXgene protocol on the Qiagen Biorobot 8000. All samples gave good quality RNA, as assessed by Agilent Bioanalyser. The yield range was 0.86-15.05ug with an average of 6.25ug. Samples were then randomised into batches, with each batch containing a representative number of controls, depression with anxiety and depression without anxiety, and the same ratio of females to males (3:1). 50ng of RNA from each sample was converted to a biotin labeled cDNA probe using NuGEN SPIA amplification. The probes were then hybridized to Affymetrix U133_Plus2.0 Genechips.
Replicable and Coupled Changes in Innate and Adaptive Immune Gene Expression in Two Case-Control Studies of Blood Microarrays in Major Depressive Disorder.
Sex, Age, Specimen part
View SamplesTo better understand the role of QscR in P. aeruginosa gene regulation and to better understand the relationship between QscR, LasR and RhlR control of gene expression we used transcription profiling to identify a QscR-dependent regulon. Our analysis revealed that QscR activates some genes and represses others. Some of the repressed genes are not regulated by the LasR-I or RhlR-I systems while others are. The LasI-generated 3-oxododecanoyl-homoserine lactone serves as a signal molecule for QscR. Thus QscR appears to be an integral component of the P. aeruginosa quorum sensing circuitry. QscR uses the LasI-generated acyl-homoserine lactone signal and controls a specific regulon that overlaps with the already overlapping LasR and RhlR-dependent regulons.
A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit.
No sample metadata fields
View SamplesIdentifying the genes underlying quantitative trait loci (QTL) for disease has proven difficult, mainly due to the low resolution of the approach and the complex genetics involved. However, recent advances in bioinformatics and the availability of genetic resources now make it possible to narrow the genetic intervals and test candidate genes. In addition to identifying the causative genes, defining the pathways that are affected by these QTL is of major importance as it can give us insight into the disease process and provide evidence to support candidate genes. In this study we mapped three significant and one suggestive QTL on Chromosomes (Chrs) 1, 4, 15, and 17, respectively, for increased albumin excretion (measured as albumin-to-creatinine ratio) in a cross between the MRL/MpJ and SM/J mouse inbred strains. By combining data from several sources and by utilizing gene expression data, we identified Tlr12 as a likely candidate for the Chr 4 QTL. Through the mapping of 33,881 transcripts measured by microarray on kidney RNA from each of the 173 male F2 animals, we identified several downstream pathways associated with these QTL. Among these were the glycan degradation, leukocyte migration, and antigen presenting pathways. We demonstrate that by combining data from multiple sources, we can identify not only genes that are likely to be causal candidates for QTL, but also the pathways through which these genes act to alter phenotypes. This combined approach provides valuable insights into the causes and consequences of renal disease.
Uncovering genes and regulatory pathways related to urinary albumin excretion.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cytokeratin-19 positivity is acquired along cancer progression and does not predict cell origin in rat hepatocarcinogenesis.
Specimen part
View SamplesNaive spleens as well as naive and LPS-treated dendritic cells from wildtype and GPR34-/- mice were sequenced to integrate expression profiles with protein interaction networks and find functional modules that are affected by GPR34 Overall design: Expression profiles of dendritic cells and whole spleens were generated using Illumina HiSeq 2500/ Illumina HiScan
Dendritic Cells Regulate GPR34 through Mitogenic Signals and Undergo Apoptosis in Its Absence.
No sample metadata fields
View SamplesAnalysis of early changes in the R-H model of carcinogenesis in order to investigate the relationship between oval cell proliferation and preneoplastic foci
Cytokeratin-19 positivity is acquired along cancer progression and does not predict cell origin in rat hepatocarcinogenesis.
Specimen part
View SamplesAnalysis of early changes in the R-H model of carcinogenesis in order to investigate the relationship between oval cell proliferation and preneoplastic foci
Cytokeratin-19 positivity is acquired along cancer progression and does not predict cell origin in rat hepatocarcinogenesis.
Specimen part
View SamplesNext-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived normal human kidney transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Overall design: The kidney tissue was immediately placed and stored in RNAlater® (Ambion), according to the manufacturer’s instruction. The tissue was manually microdissected under microscope in RNAlater® pool for glomerular and tubular compartment. Dissected tissue was homogenized and RNA was prepared using RNAeasy mini columns (Qiagen, Valencia, CA, US), according to the manufacturer’s instructions. RNA quality and quantity were determined using the Laboratory-on-Chip Total RNA PicoKit Agilent BioAnalyzer. Only samples without evidence of degradation were further used (RNA Integrity Number >6).
Functional genomic annotation of genetic risk loci highlights inflammation and epithelial biology networks in CKD.
No sample metadata fields
View SamplesA QTL analysis between inbred mouse strains MRL/MpJ and SM/J was performed to identify genetic loci influencing high-density lipoprotein (HDL) cholesterol and triglycerides (TG) at eight weeks of age in F2 mice fed a chow diet. In order to narrow down lists of candidate genes, expression levels from liver tissue were used to test for differential expression among parental and F1 strains and to scan for eQTL in F2 animals. We provide evidence for Mppe1 (Chr 18) as an HDL QTL candidate gene and Cyp2d26 (Chr 15) as a TG QTL candidate gene.
Integration of QTL and bioinformatic tools to identify candidate genes for triglycerides in mice.
Sex, Age, Specimen part
View Samples