refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 120 results
Sort by

Filters

Technology

Platform

accession-icon GSE83861
Effect of 13RAP2.12 overexpression
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st)

Description

The effect of the overexpression of a stabilized version of the transcription factor RELATED TO APETALA2.12 (RAP2.12) on the transcriptome of Arabidopsis rosettes was investigated. To this purpose, 4-week old rosette of wild-type and 35S:13RAP2.12 plants were compared. Samples were composed of pools of 3 plants.

Publication Title

Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE17099
Effect of AtHRE1 and AtHRE2 overexpression in normoxia and hypoxia
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

HRE1 and HRE2 are two ERF transcription factors induced by low oxygen. In this work we analyzed the effect of ectopic expression of HRE1 and HRE2 on the arabidopsis transcriptome in aerobic and hypoxic (1% O2) conditions. While HRE1 has a moderate effect on the expression of anaerobic genes under hypoxia, HRE2 does not affect them either under aerobic or hypoxic conditions.

Publication Title

HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana.

Sample Metadata Fields

Age, Treatment

View Samples
accession-icon GSE29187
Impact of RAP2.12 alterations on gene expression in hypoxic and aerobic conditions
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In this study we analyzed the effect of overexpression of an HA-tagged version of the ERF RAP2.12 on the transcriptome levels in aerobic and hypoxic-treated (O2 21% and 1%, respectively) Arabidopsis thaliana rosettes.

Publication Title

Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE50679
Fine-tuning of the anaerobic response in plants relies on trihelix protein repression of the oxygen sensing machinery
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This study analyzes transcriptomic data of Arabidopsis thaliana Col-0 and overexpression lines of Hypoxia Response Attenuator (HRA1; At3g10040) with Col-0 background (OE-HRA1). Two independent transgenic lines of OE-HRA1 were considered as biological replicates (OE-HRA1#1 and OE-HRA1#2). Seven-day-old seedlings were treated either with or without hypoxia (low oxygen) stress for 2 hours. This dataset includes CEL files, RMA signal values and MAS5 P/M/A calls from total mRNA populations. Quantitative profiling of cellular mRNAs was accomplished with the Affymetrix ATH1 platform.

Publication Title

A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE6908
Transcript Profiling of the Aerobic and Anoxic Rice Coleoptile
  • organism-icon Oryza sativa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Rice (Oryza sativa L.) seeds can germinate in complete absence of oxygen. Under anoxia, the rice coleoptile elongates, reaching a length greater than that of the aerobic one. In this series, we compare the transcriptome of rice coleoptiles grown under aerobic and anaerobic conditions.

Publication Title

Transcript profiling of the anoxic rice coleoptile.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44344
Effect of PCO1 overexpression
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE44343
Effect of PCO1 overexpression [hypoxia]
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The effect of the overexpression of Plant Cysteine Oxidase (PDCO1) on the transcriptome of Arabidopsis resettes was investigated with plants subjected to a 4h hypoxia (5% O2 v/v in air). For this purpose, 4-week old rosette of wild-type and 35S:FLAG:CDO1 plants were compared. Samples were composed of pools of 5 plants.

Publication Title

Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE44342
Effect of PCO1 overexpression [normoxia]
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The effect of the overexpression of Plant Cysteine Oxidase (PCO1) on the transcriptome of Arabidopsis resettes was investigated. For this purpose, 4-week old rosette of wild-type and 35S:FLAG:CDO1 plants were compared. Samples were composed of a pool of 5 plants.

Publication Title

Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon SRP102698
Response of Arabidopsis thaliana seedlings to acyl-CoAs
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

Floodings already have a nearly 60% share in the worldwide damage to crops provoked by natural disasters. Climate change will cause plants to be even more frequently exposed to oxygen limiting conditions (hypoxia) in the near future due to heavy precipitation and concomitant waterlogging or flooding events in large areas of the world. Although the homeostatic regulation of adaptive responses to low oxygen stress in plants is well described, it remained unknown by which initial trigger the molecular response to low-oxygen stress is activated. Here, we show that a hypoxia-induced decline of the ATP level of the cell reduces LONG-CHAIN ACYL-COA SYNTHETASE (LACS) activity, which leads to a shift in the composition of the acyl-CoA pool. High oleoyl-CoA levels release the transcription factor RELATED TO APETALA 2.12 (RAP2.12) from its interaction partner ACYL-COA BINDING PROTEIN (ACBP) at the plasma membrane to induce low oxygen-specific gene expression. We show that different acyl-CoAs provoke unique molecular responses revealing a novel role as cellular signalling component also in plants. In terms of hypoxia signalling, dynamic acyl-CoA levels integrate the cellular energy status into the oxygen signalling cascade with ACBP and RAP2.12 being the central hub. The conserved nature of the ACBP:RAP2.12 module in crops and the novel mechanistic understanding of how low-oxygen stress responses are initiated by oleoyl-CoA in plants provide useful leads for enhancing future food security. Overall design: 1 control and 3 treatments with different forms of acyl-CoA in triplicate biological replicates

Publication Title

Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA in <i>Arabidopsis</i>.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP092049
Transcriptome of EMT induced MCF10A cells by TGFb treatment or SNAIL S6A expression.
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

EMT, Epithelial to mesenchymal transition is a developmental biology process associated with migration, known to be involved in cancer metastasis. To study this process, we used the breast epithelial cell line MCF10A that enter in EMT after treatment with the cytokine TGFB or by expression of EMT transcriptor factor SNAIL. Overall design: mRNA profiles of MCF10A cells treated for 1 or 6 days with TGFb (done in duplicate), and mRNA profiles of Snail inducible line, MCF10A-SNAIl, induced for 1 or 6 days.

Publication Title

Genomic Instability Is Induced by Persistent Proliferation of Cells Undergoing Epithelial-to-Mesenchymal Transition.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact