This study examines the mechanisms underlying fumarate- and glyoxylate-mediated changes in tobraymcyin sensitivity in PAO1 cells
Carbon Sources Tune Antibiotic Susceptibility in Pseudomonas aeruginosa via Tricarboxylic Acid Cycle Control.
No sample metadata fields
View SamplesAlthough transcriptional programs associated with T-cell specification and commitment have been described, the functional hierarchy and the roles of key regulators in structuring/ orchestrating these programs remain unclear. Activation of Notch signaling in uncommitted precursors by the thymic stroma initiates the T-cell differentiation program. One regulator first induced in these precursors is the DNA binding protein Tcf-1, a T-cell specific mediator of Wnt signaling. Yet the specific contribution of Tcf-1 to early T-cell development and the signals inducing it in these cells remain unclear. Here we assign functional significance to Tcf-1 as a gatekeeper of T-cell fate. We show that Tcf-1 is directly activated by Notch signals. Tcf-1 is required at the earliest phase of Tcell determination for progression beyond the early thymic progenitor (ETP) stage. The global expression profile of Tcf-1 deficient progenitors indicates that basic processes of DNA metabolism are downregulated in its absence and the blocked T-cell progenitors become abortive and die by apoptosis. Our data thus add an important functional relationship to the roadmap of T-cell development.
T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling.
Specimen part
View SamplesWe report that in developing B cells individual enhancers of Igk make up super-enhancer cluster where contacts between its components rely on all constituents. Reduction of interaction frequency in enhancer knock-out cells is associated with deminished transcriptional output of enhancers and Igk locus. Moreover, we find that Igk enhancer MiEk has an effect on levels of CBFb enrichment on Tcrb enhancer, Eb afffecting Tcrb recombination and T cell development. Overall design: Examination of expression, chromatin accessibility, histone modifications and nuclear organization in developing wild-type and Igk and Tcrb enhancer deficient B and T lymphocytes.
Active and Inactive Enhancers Cooperate to Exert Localized and Long-Range Control of Gene Regulation.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Age, Specimen part
View SamplesNotch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Age, Specimen part
View SamplesNotch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Age, Specimen part
View SamplesNotch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Age, Specimen part
View SamplesNotch signaling defines a conserved, fundamental pathway, responsible for determination in metazoan development and is widely recognized as an essential component of lineage specific differentiation and stem cell self-renewal in many tissues including the hematopoietic system. Until recently, the majority of studies in the hematopoietic system focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles in early hematopoiesis has been limited due to a paucity of genetic tools available To fate-map Notch receptor expression and pathway activity in the hematopoietic system we used tamoxifen-inducible CreER knock-in mice for individual Notch receptors in combination to a novel Notch reporter strain (Hes1GFP) and a conditional gain of function allele of Notch2 receptor (Rosa-lsl-ICN2).
In vivo mapping of notch pathway activity in normal and stress hematopoiesis.
Sex, Specimen part
View SamplesMissense mutations in the gene for the ubiquitously expressed superoxide dismutase-1 (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disease in humans killing selectively large motor neurons. Mice and rats overexpressing mutant SOD1 develop an adult onset neurodegenerative disease with hindlimb-paralysis and subsequent death similar to the human condition. In order to analyze the effects of mutant SOD1 expression onto the most affected cell-type in ALS, a small subpopulation of spinal cord cells, we propose to use laser microdissection to isolate mouse lumbar motor neurons and to assess the changes onto the mRNA expression profile using Affymetrix GeneChips compared to control animals. While two studies applying a genomic approach on the ALS mouse models used the entire spinal cord, contributions of changes to motor neurons were masked by the inflammatory effects of mutant SOD1 and the much larger population of non-motor neuronal cells. What is therefore needed is a cell-type specific expression profile that could reveal dysregulations in the transcriptome of the affected motor neurons.
Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Notch pathway activation targets AML-initiating cell homeostasis and differentiation.
Sex, Specimen part, Cell line, Treatment
View Samples