Androgen receptor (AR) is the major therapeutic target in aggressive prostate cancer. However, targeting AR alone can result in drug resistance and disease recurrence. Therefore, simultaneous targeting of multiple pathways could in principle be an effective new approach to treating prostate cancer. Here we provide proof-of-concept that a small molecule inhibitor of nuclear ß-catenin activity (called C3) can inhibit both the AR and ß-catenin signaling pathways that are often misregulated in prostate cancer. Treatment with C3 ablated prostate cancer cell growth by disruption of both ß-catenin/TCF and ß-catenin/AR protein interaction, reflecting the fact that TCF and AR have overlapping binding sites on ß-catenin. Given that AR interacts with, and is transcriptionally regulated by ß-catenin, C3 treatment also resulted in decreased occupancy of ß-catenin on the AR promoter and diminished AR and AR/ß-catenin target gene expression. Interestingly, C3 treatment resulted in decreased AR binding to target genes accompanied by decreased recruitment of an AR and ß-catenin cofactor, CARM1, providing new insight into the unrecognized function of ß-catenin in prostate cancer. Importantly, C3 inhibited tumor growth in an in vivo xenograft model, and blocked renewal of bicalutamide-resistant sphere forming cells, indicating the therapeutic potential of this approach. Overall design: Compare and contrast the expression profile of prostate cancer cells treated with a Wnt inhibitor (C3) with respect to ß-catenin and AR knockdown (all samples in duplicates).
Inhibition of androgen receptor and β-catenin activity in prostate cancer.
Disease, Subject
View SamplesIn order to obtain a global picture regarding regulation of p53 in liver cells we used HepG2 hepatoma cells.We created two isogenic sub-cultures of HepG2 cells with altered expression of p53.
Chemotherapeutic agents induce the expression and activity of their clearing enzyme CYP3A4 by activating p53.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Age-associated changes in basal NF-κB function in human CD4+ T lymphocytes via dysregulation of PI3 kinase.
Sex, Age, Specimen part, Treatment
View SamplesImmune impairment and high circulating level of pro-inflammatory cytokines are landmarks of human aging. However, the molecular basis of immune dysregulation and the source of inflammatory markers remain unclear. Here we demonstrate that in the absence of overt cell stimulation, gene expression mediated by the transcription factor NF-B is higher in purified and rested human CD4+ T lymphocytes from older compared to younger individuals. This increase of NF-B -associated transcription includes transcripts for pro-inflammatory cytokines such as IL-1 and chemokines such as CCL2 and CXCL10. We demonstrate that NF-B up-regulation is cell-intrinsic and mediated in part by phosphatidylinositol 3-kinase (PI3K) activity induced in response to metabolic activity, which can be moderated by rapamycin treatment. Our observations provide direct evidence that dysregulated basal NF-B activity may contribute to the mild pro-inflammatory state of aging.
Age-associated changes in basal NF-κB function in human CD4+ T lymphocytes via dysregulation of PI3 kinase.
Sex, Age, Specimen part, Treatment
View SamplesImmune impairment and high circulating level of pro-inflammatory cytokines are landmarks of human aging. However, the molecular basis of immune dysregulation and the source of inflammatory markers remain unclear. Here we demonstrate that in the absence of overt cell stimulation, gene expression mediated by the transcription factor NF-B is higher in purified and rested human CD4+ T lymphocytes from older compared to younger individuals. This increase of NF-B -associated transcription includes transcripts for pro-inflammatory cytokines such as IL-1 and chemokines such as CCL2 and CXCL10. We demonstrate that NF-B up-regulation is cell-intrinsic and mediated in part by phosphatidylinositol 3-kinase (PI3K) activity induced in response to metabolic activity, which can be moderated by rapamycin treatment. Our observations provide direct evidence that dysregulated basal NF-B activity may contribute to the mild pro-inflammatory state of aging.
Age-associated changes in basal NF-κB function in human CD4+ T lymphocytes via dysregulation of PI3 kinase.
Sex, Age, Specimen part, Treatment
View SamplesImmune impairment and high circulating level of pro-inflammatory cytokines are landmarks of human aging. However, the molecular basis of immune dysregulation and the source of inflammatory markers remain unclear. Here we demonstrate that in the absence of overt cell stimulation, gene expression mediated by the transcription factor NF-B is higher in purified and rested human CD4+ T lymphocytes from older compared to younger individuals. This increase of NF-B -associated transcription includes transcripts for pro-inflammatory cytokines such as IL-1 and chemokines such as CCL2 and CXCL10. We demonstrate that NF-B up-regulation is cell-intrinsic and mediated in part by phosphatidylinositol 3-kinase (PI3K) activity induced in response to metabolic activity, which can be moderated by rapamycin treatment. Our observations provide direct evidence that dysregulated basal NF-B activity may contribute to the mild pro-inflammatory state of aging.
Age-associated changes in basal NF-κB function in human CD4+ T lymphocytes via dysregulation of PI3 kinase.
Sex, Age, Specimen part, Treatment
View SamplesNeurons in the arcuate nucleus (ARC) sense the fed/fasted state and regulate hunger. ARCAgRP neurons release GABA, NPY and the melanocortin-4 receptor (MC4R) antagonist, AgRP, and are activated by fasting1-4. When stimulated, they rapidly and potently drive hunger5,6. ARCPOMC neurons, in contrast, release the MC4R agonist, a-MSH, and are viewed as the counterpoint to ARCAgRP neurons. They are regulated in an opposite fashion and their activity leads to decreased hunger2,4,7. Together, ARCAgRP and ARCPOMC neurons constitute the ARC feeding center. Against this, however, is the finding that ARCPOMC neurons, unlike ARCAgRP neurons, fail to affect food intake over the timescale of minutes to hours following opto- or chemogenetic stimulation5,8. This suggests a rapidly acting component of the ARC satiety pathway is missing. Here, we show that excitatory ARC neurons identified by expression of vesicular glutamate transporter 2 (VGLUT2) and the oxytocin receptor, unlike ARCPOMC neurons, rapidly cause satiety when chemo- or optogenetically manipulated. These glutamatergic ARC projections synaptically converge with GABAergic ARCAgRP projections on MC4R-expressing neurons in the paraventricular hypothalamus (PVHMC4R neurons), which are known to mediate satiety9. ARCPOMC neurons also send dense projections to the PVH. Importantly, the a-MSH they release post-synaptically potentiates glutamatergic synaptic activity onto PVHMC4R neurons – including that emanating from ARCVglut2 neurons. This suggests a means by which a-MSH can bring about satiety – via postsynaptic potentiation of this novel ARCVglut2 to PVHMC4R satiety circuit. Thus, while fast (GABA and NPY) and slow (AgRP) ARC hunger signals are delivered together by ARCAgRP neurons10,11, the temporally analogous satiety signals from the ARC, glutamate and a-MSH, are delivered separately by two parallel, interacting projections (from ARCVGLUT2 and ARCPOMC neurons). Discovery of this rapidly acting excitatory ARC ? PVH satiety circuit, and its regulation by a-MSH, provides new insight into regulation of hunger/satiety. Overall design: 23 samples representing single neurons dissociated from the arcuate hypothalamus of two young adult male vGLUT2-IRES-Cre mice
A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH.
Specimen part, Cell line, Subject
View SamplesMesenchymal stromal cells (MSCs) are used extensively in clinical trials; however, the potential for malignant transformation of MSCs has been raised. We examined the genomic stability versus the tumor forming capacity of multiple mouse MSCs. Murine MSCs have been shown to be less stable and more prone to malignant transformation than their human counterparts. A large series of independently isolated MSC populations exhibited low tumorigenic potential under syngeneic conditions, which increased in immune-compromised animals. Unexpectedly, higher ploidy correlated with reduced tumor forming capacity. Furthermore, in both cultured MSCs and primary hepatocytes, polyploidization was associated with a dramatic decrease in the expression of the long non-coding RNA H19. Direct knockdown of H19 expression in diploid cells resulted in acquisition of polyploid cell traits. Moreover, artificial tetraploidization of diploid cancer cells led to a reduction of H19 levels, as well as to an attenuation of the tumorigenic potential. Polyploidy might therefore serve as a protective mechanism aimed at reducing malignant transformation through the involvement of the H19 regulatory long non-coding RNA.
Polyploidization of murine mesenchymal cells is associated with suppression of the long noncoding RNA H19 and reduced tumorigenicity.
Specimen part
View SamplesFibro-adipogenic progenitors (FAPs) are emerging cellular components of the skeletal muscle regenerative environment. The alternative functional phenotype of FAPs - either supportive of muscle regeneration or promoting fibro-adipogenic degeneration - is a key determinant in the pathogenesis of muscular diseases, including Duchenne Muscular Dystrophy (DMD). However, the molecular regulation of FAPs is still unknown. We show here that an "HDAC-myomiR-BAF60 variant network" regulates the functional phenotype of FAPs in dystrophic muscles of mdx mice. Combinatorial analysis of gene expression microarray and genome-wide chromatin remodeling by Nuclease accessibility (NA)-seq revealed that HDAC inhibitors de-repress a "latent" myogenic program in FAPs from dystrophic muscles at early stages of disease progression. In these cells HDAC inhibition promoted the expression of two core components of the myogenic transcriptional machinery, MyoD and BAF60C, and upregulated the myomiRs (miRs) miR-1.2, miR-133 and miR-206, which target two alternative BAF60 variants (BAF60A and B) ultimately leading to the activation of a pro-myogenic program at the expense of the fibro-adipogenic phenotype. By contrast, FAPs from dystrophic muscles at late stages of disease progression displayed resistance to HDACi-induced chromatin remodeling at myogenic loci and fail to activate the pro-myogenic phenotype. These results reveal a previously unappreciated disease stage-specific bipotency of mesenchimal cells within the regenerative environment of dystrophic muscles. Resolution of such bi-potency by epigenetic interventions, such as HDACi, provides the molecular rationale for the in situ reprogramming of target cells to promote therapeutic regeneration of dystrophic muscles. Overall design: miRNA modulation upon Histone Deacetylase inhibition in Fibro-Adipogenic Progenitors (FAPs) derived from young mdx mice was evaluated by small RNA-sequencing in 2 controls and 2 treated samples
HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles.
No sample metadata fields
View SamplesTranscriptional regulatory networks (TRNs) provide insight into cellular behavior by describing interactions between transcription factors (TFs) and their gene targets. The Assay for Transposase Accessible Chromatin (ATAC)-seq, coupled with transcription-factor motif analysis, provides indirect evidence of chromatin binding for hundreds of TFs genome-wide. Here, we propose methods for TRN inference in a mammalian setting, using ATAC-seq data to influence gene expression modeling. We rigorously test our methods in the context of T Helper Cell Type 17 (Th17) differentiation, generating new ATAC-seq data to complement existing Th17 genomic resources (plentiful gene expression data, TF knock-outs and ChIP-seq experiments). In this resource-rich mammalian setting our extensive benchmarking provides quantitative, genome-scale evaluation of TRN inference combining ATAC-seq and RNA-seq data. We refine and extend our previous Th17 TRN, using our new TRN inference methods to integrate all Th17 data (gene expression, ATAC-seq, TF KO, ChIP-seq). We highlight new roles for individual TFs and groups of TFs (“TF-TF modules”) in Th17 gene regulation. Given the popularity of ATAC-seq (a widely adapted protocol with high resolution and low sample input requirements), we anticipate that application of our methods will improve TRN inference in new mammalian systems and be of particular use for rare, uncharacterized cell types. Overall design: Gene expression (RNA-seq) of naive and Th17- and Th0-polarized CD4 T Cells
Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells.
Specimen part, Cell line, Subject
View Samples