We measured gene expression in the adrenal glands of the Spontaneously Hypertensive Rat (SHR) and Wistar-Kyoto rat (WKY) using Affymetrix RG-U34A GeneChips. All rats were aged-matched at 4-weeks. The rats were obtained from the colonies at the Univeristy of California San Diego, La Jolla, CA.
Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension.
No sample metadata fields
View SamplesWe performed Affymetrix MG-U74Av2 GeneChip experiements on mRNA from the adrenal glands of the BPH hypertensive and BPL hypotensive mouse strains. All mice were aged-matched at 5 weeks. We obtained the mice from Jackson Laboratories, Bar Harbor, ME.
Neuroendocrine transcriptome in genetic hypertension: multiple changes in diverse adrenal physiological systems.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.
Sex, Specimen part
View SamplesThe objective of the experiment is to determine the genes differentially expressed in the liver of the chromogranin A knockout mouse (Mahapatra et al., 2005).
Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.
Sex, Specimen part
View SamplesThe objective of the experiment is to determine the genes differentially expressed in the adrenal gland of the chromogranin A knockout mouse (Mahapatra et al., 2005).
Global metabolic consequences of the chromogranin A-null model of hypertension: transcriptomic detection, pathway identification, and experimental verification.
Sex, Specimen part
View SamplesWe used microarrays to examine the impact of AF1q/MLLT11 on the gene expression profile of CD34+CD45RA-Lin- and CD34+CD45RA+Lin- HPCs isolated from umbilical cord blood
AF1q/MLLT11 regulates the emergence of human prothymocytes through cooperative interaction with the Notch signaling pathway.
Specimen part
View SamplesLasting B-cell persistence depends on survival signals that are transduced by cell surface receptors. Here, we describe a novel biological mechanism essential for survival and homeostasis of normal peripheral mature B cells and chronic lymphocytic leukemia (CLL) cells, regulated by the heparin-binding cytokine, midkine (MK), and its proteoglycan receptor, the receptor-type tyrosine phosphatase zeta (RPTP). We demonstrate that MK initiates a signaling cascade leading to B cell survival, by binding to RPTP. In mice lacking PTPRZ, the proportion and number of the mature B cell population is reduced. Our results emphasize a unique and critical function for MK signaling in the previously described MIF/CD74 induced survival pathway. Stimulation of CD74 with MIF leads to c-Met activation, resulting in elevation of MK expression in both normal mouse splenic B and CLL cells. Our results indicate that MK and RPTP are important regulators of the B cell repertoire. These findings could pave the way towards understanding the mechanisms shaping B cell survival, and suggest novel therapeutic strategies based on the blockade of the midkine/RPTP-dependent survival pathway.
The cytokine midkine and its receptor RPTPζ regulate B cell survival in a pathway induced by CD74.
Age
View SamplesWe demonstrated that 3-Deazaneplanocin A (DZNep), a histone methyltransferase inhibitor, induce robust apoptosis in AML cells through increased ROS production and ER stress.
The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation.
Time
View SamplesThe progression from stem cell to differentiated neuron is associated with extensive chromatin remodeling that controls gene expression, but the mechanisms that connect chromatin to gene expression are not well defined. Here we show that mutation of ZNF335 causes severe human microcephaly ("small brain"), small somatic size, and neonatal death. Germline Znf335 null mutations are embryonically lethal in mice, whereas RNA-interference studies and postmortem human studies show that Znf335 is essential for neural progenitor self-renewal, neurogenesis, and neuronal differentiation. Znf335 is a component of a vertebrate-specific, trithorax H3K4 methylation complex, while global ChIP-seq and mRNA expression studies show that Znf335 is a previously unsuspected, direct regulator of REST/NRSF, a master regulator of neural gene expression and neural cell fate, as well as other essential neural-specific genes. Our results reveal ZNF335 as an essential link between H3K4 complexes and REST/NRSF, and provide the first direct evidence that this pathway regulates human neurogenesis and neuronal differentiation.
Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation.
Time
View Samples