PTEN imparts tumor suppression in mice by cell autonomous and non-autonomous mechanisms. Whether these two tumor suppressor mechanisms are mediated through similar or distinct signaling pathways is not known. Here we generated and analyzed knockin mice that express a series of human cancer-derived mutant alleles of PTEN that differentially alter the Akt axis in either stromal or tumor cell compartments of mammary glands. We find that cell non-autonomous tumor suppression by Pten in stromal fibroblasts strictly requires activation of P-Akt signaling, whereas cell autonomous tumor suppression in epithelial tumor cells is independent of overt canonical pathway activation. These findings expose distinct Akt-dependent and independent tumor suppressor functions of PTEN in stromal fibroblasts and tumor cells, respectively, that can be used to guide clinical care of breast cancer patients
Noncatalytic PTEN missense mutation predisposes to organ-selective cancer development in vivo.
Age, Specimen part
View SamplesPTEN imparts tumor suppression in mice by cell autonomous and non-autonomous mechanisms. Whether these two tumor suppressor roles are mediated through similar or distinct signaling pathways is not known. Here we generated and analyzed knockin mice that express a series of human cancer-derived mutant alleles of PTEN in either stromal or tumor cell compartments of mammary glands. We find that cell non-autonomous tumor suppression by Pten in stromal fibroblasts strictly requires activation of P-Akt signaling, whereas cell autonomous tumor suppression in epithelial tumor cells is independent of overt canonical pathway activation
Noncatalytic PTEN missense mutation predisposes to organ-selective cancer development in vivo.
Age, Specimen part
View SamplesPurpose: Identify genes and pathways affected in tuft embryos with NTDs Results: Expression of genes associated with neural tube closure and components of non-canonical WNT signaling/PCP pathways were affected Conclusions: TET1 regulates genes associated with neural tube closure Overall design: RNA pooled from the rostrums of E9 (18-22 somites) tuft/tuft embryos with NTD compared with respective wildtype background strain
A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure.
Specimen part, Cell line, Subject
View SamplesA major goal in prostate stem cell biology is to identify genes, pathways, or networks that control self-renewal and multilineage differentiation. We hypothesize that 1,25 dihydroxyvitamin D3 can induce differentiation of prostatic progenitor/stem cells, thus serving as an in vitro model with which to study the molecular mechanisms of stem cell differentiation by 1,25 dihydroxyvitamin D3. 1,25 dihydroxyvitamin D3 elicits its effects primarily through transcriptional regulation of genes, so microarray studies were used to gain insight into the cellular response to 1,25 dihydroxyvitamin D3.
Interleukin-1α mediates the antiproliferative effects of 1,25-dihydroxyvitamin D3 in prostate progenitor/stem cells.
Specimen part
View SamplesDNA methylation is critical for normal development and plays important roles in genome organization and transcriptional regulation. Although DNA methyltransferases have been identified, the factors that establish and contribute to genome-wide methylation patterns remain elusive. Here, we report a high-resolution cytosine methylation map of the murine genome modulated by Lsh, a chromatin remodeling family member that has previously been shown to regulate CpG methylation at repetitive sequences. We provide evidence that Lsh also controls genome-wide cytosine methylation at nonrepeat sequences and relate those changes to alterations in H4K4me3 modification and gene expression. Deletion of Lsh alters the allocation of cytosine methylation in chromosomal regions of 50 kb to 2 Mb and, in addition, leads to changes in the methylation profile at the 5 end of genes. Furthermore, we demonstrate that loss of Lsh promotesas well as preventscytosine methylation. Our data indicate that Lsh is an epigenetic modulator that is critical for normal distribution of cytosine methylation throughout the murine genome.
Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences.
Specimen part
View SamplesDNA methylation is critical for normal development and plays important roles in genome organization and transcriptional regulation. Although DNA methyltransferases have been identified, the factors that establish and contribute to genome-wide methylation patterns remain elusive. Here, we report a high-resolution cytosine methylation map of the murine genome modulated by Lsh, a chromatin remodeling family member that has previously been shown to regulate CpG methylation at repetitive sequences. We provide evidence that Lsh also controls genome-wide cytosine methylation at nonrepeat sequences and relate those changes to alterations in H4K4me3 modification and gene expression. Deletion of Lsh alters the allocation of cytosine methylation in chromosomal regions of 50 kb to 2 Mb and, in addition, leads to changes in the methylation profile at the 5 end of genes. Furthermore, we demonstrate that loss of Lsh promotesas well as preventscytosine methylation. Our data indicate that Lsh is an epigenetic modulator that is critical for normal distribution of cytosine methylation throughout the murine genome.
Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences.
Specimen part
View SamplesThis study examines the transcriptional changes invoked by activation of gp130 signaling in different mouse models of B cell lymphomagenesis. In order to study the in vivo effects of aberrant activity of IL-6/IL-6R/gp130-JAK/STAT3 signaling, we designed a transgene that allows conditional expression of L-gp130 by generating a ROSA26 knock-in mouse strain where compound L-gp130 and ZsGreen expression from the CAG promoter is prevented by a loxP- and a rox-flanked stop cassette. Total RNA extracted from purified B cells from young CD19Cre+/- ;L-gp130fl/+ and wildtype control mice was sequenced using unique molecular identifiers (UMI) in a paired end design where read1 corresponds to the cDNA and read2 contains the UMI. Furthermore, aging CD19Cre+/- ;L-gp130fl/+ animals developed tumors located predominantly in mesenteric lymph nodes. Infiltration of CD19;L-gp activated B cells was determined by Flow Cytometry and ZsGreen expression. Total RNA from tumors generally containing >60% ZsGreen+ cells was profiled as described above, for tumors with lower CD19;L-gp activated B cell content FACS was applied. In order to study the effects of activated IL-6/IL-6R/gp130-JAK/STAT3 signaling on Eµ-Myc-driven lymphomagenesis, CD19Cre;L-gp130fl;Eµ-Myc triple transgenic mice were generated and fetal liver hematopoietic stem/progenitor cell (FL-HSPC) grafts were transplanted into lethally irradiated syngeneic mice alongside FL-HSPC from CD19Cre;L-gp130f and Eµ-Myc control mice. Lastly, IL-6/IL-6R/gp130-JAK/STAT3 signaling was activated in the entire hematopoetic system using Vav1Cre resulting in Vav1Cre+/- ;L-gp130fl/+ animals. Independent of the time point of activation during hematopoietic and B cell differentiation, all Cre;L-gp compound mice succumbed to tumors of B cell origin. Overall design: Bulk gene expression data are presented for (i) purified B cells from wildtype control mice (n=6) and young CD19;L-gp mice (n=4), (ii) tumors detected in aging CD19;L-gp mice with a mature (n=11) and plasma cell phenotype (n=6), respectively, (iii) tumors arising in lethally irradiated syngeneic mice after transplantation of fetal liver hematopoietic stem/progenitor cells from CD19;L-gp;Myc (n=9), CD19;L-gp (n=7) and Eµ-Myc (n=9) mice, respectively, and (iv) malignant B cells from Vav1;L-gp mice (n=13).
Activated gp130 signaling selectively targets B cell differentiation to induce mature lymphoma and plasmacytoma.
Specimen part, Subject
View SamplesIn vitro differentiation of embryonic stem cells (ESC) provides models that reproduce in vivo development and cells for therapy. Whether the epigenetic signatures that are crucial for brain development and function and that are sensitive to in vitro culture are similar between native brain tissues and their artificial counterpart generated from ESC is largely unknown. Here, using RNA-seq we have compared the parental origin-dependent expression of imprinted genes (IGs), a model of epigenetic regulation, in cerebral cortex generated either in vivo, or from ESCs using in vitro corticogenesis, a model that reproduces the landmarks of in vivo corticogenesis. For a majority of IGs, the expressed parental alleles were the same for in vivo and in vitro cortex. In most cases, this choice was already set in ESCs and faithfully maintained during the 3 weeks of in vitro corticogenesis. Confirming these findings, methylation, which selects the parental allele to be transcribed, was also largely equivalent between the 2 types of cortex and ESCs. Our results thus indicate that the allele specific expression of imprinted transcripts, a model of epigenetic regulation resulting from a differential methylation of parental genomes, is mostly mimicked in cortical cells derived from ESC. Overall design: We have crossed two strains of mice (B6 and JF1) that display more than 12 million of SNPs (Takada et al., Genome Res. 2013 Aug;23(8):1329-38. doi: 10.1101/gr.156497.113). We have then analyzed allele specific expression transcriptome-wide using RNA-seq on hybrid F1 cortex generated either in vivo or in vitro from ESCs. In addition, we have used 2 different developmental stages of in vivo cortex (E13.5, P0) and three stages in vitro (undiffererentiated ESC, and differentiated into cortex for 12 and 21 days) to measure the dynamics of parental expression. Please note that [1] the same raw data files were used to generate the ''*allele-specific_sense_read_bases_by_gene_withoutContamination.txt'' processed data files. [2] The samples associated with each file are indicated in the file column header (as their GSM accession numbers). [3] The readme.txt file contains the data processing steps, file description.
In Vitro Corticogenesis from Embryonic Stem Cells Recapitulates the In Vivo Epigenetic Control of Imprinted Gene Expression.
No sample metadata fields
View SamplesIdentification of genes that are differentially-expressed in dusp2um287/um287;dusp6um286/um286 mutant embryos compared to wildtype Overall design: Total RNA was extracted from pools of dechrionated, deyolked wildtype and dusp2um287/um287;dusp6um286/um286 embryos at 18hpf using the RNeasy Mini Kit (Qiagen). Three libraries from wildtype embryos and three libraries from dusp2um287/um287;dusp6um286/um286 embryos were then generated from 3mg RNA using the TruSeq Stranded mRNA Library Prep Kit (Illumina). All libraries were analyzed for quality on a bioanalyzer prior to sequencing (Agilent 2100 BioAnalyzer).
A parental requirement for dual-specificity phosphatase 6 in zebrafish.
No sample metadata fields
View SamplesBovine chondrocyte-seeded and mesenchymal stem cell (MSC)-seeded agarose were cultured for 28 days in chemically defined media containing 10 ng/mL TGF-beta3. Chondrogenic differentiated MSCs were compared to chondrocytes at this timepoint and to undifferentiated MSCs harvested at day 0.
Evaluation of the complex transcriptional topography of mesenchymal stem cell chondrogenesis for cartilage tissue engineering.
Specimen part, Subject
View Samples