Global gene expression patterns associated with early stage endometrial cancer have been reported, but changes in molecular expression associated with tumor grade, depth of myometrial invasion, and non-endometrioid histology have not been previously elucidated. Our group hypothesized there are unique genetic events underlying early endometrial carcinogenesis. Ninety-two samples of pathologically reviewed stage I endometrial cancers (80 endometrioid and 12 serous) with a heterogeneous distribution of grade and depth of myometrial invasion (i.e. 9 IAG1, 14 IAG2, 7 IAG3, 14 IBG1, 12 IBG2, 13 IBG3, 7 ICG1, 10 ICG2, and 6 ICG3) were examined in relation to 12 samples of atrophic endometrium from postmenopausal women. Specimens were analyzed using oligonucleotide microarray analysis and a subset of the differentially expressed transcripts was validated using quantitative PCR. Comparison of early stage cancers with normal endometrium samples by the univariate t-test with 10,000 permutations identified 900 genes that were differentially regulated by at least 4-fold at a p value of <0.001. Unsupervised analysis revealed that when compared to normal endometrium, serous and endometrioid stage I cancers appeared to have similar expression patterns. However, when compared in the absence of normal controls, they were distinct. Differential expression analysis revealed a number of transcripts that were common as well as unique to both histologic types. This data uncovers previously unrecognized, novel pathways involved in early stage endometrial cancers and identifys targets for prevention strategies that are inclusive of both endometrioid and serous histologic subtypes.
Identifier mapping performance for integrating transcriptomics and proteomics experimental results.
Age, Disease stage, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress.
Treatment
View SamplesIn response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53 dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveals that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair
Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress.
Treatment
View SamplesBackground: Beta-adrenergic receptor agonists (BA) induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. We chose to evaluate global changes in gene expression by utilizing the Affymetrix platform to identify gene expression changes in mouse skeletal muscle. Changes in gene expression were evaluated 24 h (1D) and 10 days (10D) after administration of the BA clenbuterol.
Changes in skeletal muscle gene expression following clenbuterol administration.
No sample metadata fields
View SamplesMurine C26 tumor xenografts displayed different responses to the treatments of PBS, Doxorubicin (Dox), and chimeric polypeptide (CP)-Dox conjugates. We used microarrays to globally study gene expression underlying these different responses and identified distinct classes of up-regulated or down-regulated genes upon treatment.
Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection.
Age, Specimen part
View SamplesWe used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes during this process.
Bone healing in an aged murine fracture model is characterized by sustained callus inflammation and decreased cell proliferation.
Specimen part
View SamplesSamples of primary tumors collected from 23 ovarian cancer patients
Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy.
Sex, Specimen part, Disease
View SamplesDuring embryogenesis, cell specification and tissue formation is directed by the concentration and temporal presentation of morphogens, and similarly, pluripotent embryonic stem cells differentiate in vitro into various phenotypes in response to morphogen treatment. Embryonic stem cells are commonly differentiated as three dimensional spheroids called embryoid bodies (EBs); however, differentiation within EBs is typically heterogeneous and disordered. Here we show that spatiotemporal control of microenvironmental cues embedded directly within EBs enhances the homogeneity, synchrony and organization of differentiation. Degradable polymer microspheres releasing retinoic acid within EBs induce the formation of cystic spheroids closely resembling the early streak mouse embryo, with an exterior of visceral endoderm enveloping an epiblast layer. These results demonstrate that controlled morphogen presentation to stem cells more efficiently directs cell differentiation and tissue formation, thereby improving developmental biology models and enabling the development of regenerative medicine therapies and cell diagnostics.
Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules.
No sample metadata fields
View SamplesCompetitive inhibitors of acetyl-lysine binding to the bromodomains of the BET (bromodomain and extra terminal) family are being developed for the treatment of solid and heme malignancies. BET family member BRD4 function at enhancers/super-enhancers has been shown to sustain signal-dependent or pathogenic gene expression programs.
HEXIM1 as a Robust Pharmacodynamic Marker for Monitoring Target Engagement of BET Family Bromodomain Inhibitors in Tumors and Surrogate Tissues.
Specimen part
View SamplesTo identify genes that are modulated by BET inhibitors in blood, we determined global gene expression changes in ABBV-075-treated mouse whole blood samples
HEXIM1 as a Robust Pharmacodynamic Marker for Monitoring Target Engagement of BET Family Bromodomain Inhibitors in Tumors and Surrogate Tissues.
Specimen part
View Samples