Examine the possible pro-inflammatory gene effects of alloantibody and complement on endothelial cells
Alloantibody and complement promote T cell-mediated cardiac allograft vasculopathy through noncanonical nuclear factor-κB signaling in endothelial cells.
Specimen part, Treatment
View SamplesHigh-grade gliomas are amongst the most deadly human tumors. Treatment results are overall disappointing. Nevertheless, in several trials around 20% of patients respond to therapy. Diagnostic strategies to identify those patients that will ultimately profit from a specific targeted therapy are urgently needed. Gene expression profiling of untreated tumors is a well established approach for identifying biomarkers or diagnostic signatures. However, reliable signatures predicting treatment response in gliomas do not exist. Here we suggest a novel strategy for developing diagnostic signatures. We postulate that predictive gene expression patterns emerge only after tumor cells have been treated with the agent in vitro. Moreover, we postulate that enriching specimens for tumor initiating cells sharpens predictive expression patterns. Here, we report on the prediction of treatment response of cancer cells in vitro. As a proof of principle we analyzed gene expression in 18 short-term serum-free cultures of high-grade gliomas enhanced for brain tumor initiating cells (BTIC) before and after in vitro treatment with the tyrosine kinase inhibitor Sunitinib. Profiles from treated but not from untreated glioma cells allowed to predict therapy-induced impairment of proliferation of glioma cells in vitro. Prediction can be achieved with as little as 6 genes allowing for a straightforward translation into the clinic once the predictive power of the signature is shown also in vivo. Our strategy of using expression profiles from in vitro treated BTIC-enriched cultures opens new ways for trial design for patients with malignant gliomas.
Response-predictive gene expression profiling of glioma progenitor cells in vitro.
Specimen part, Treatment
View SamplesRadiotherapy is widely used to treat human cancer. Patients locally recurring after radiotherapy, however, have increased risk of metastatic progression and poor prognosis. The clinical management of post-radiation recurrences remains an unresolved issue. Tumors growing in pre-irradiated tissues have an increased fraction of hypoxic cells and are more metastatic, a condition known as tumor bed effect. Here we demonstrate that tumor cells growing in a pre-irradiated bed, or selected in vitro though repeated cycles of severe hypoxia, retain an invasive and metastatic capacities when returned to normoxia. HIF activity, while it facilitates metastatic spreading of tumors growing in a pre-irradiated bed, is not essential. Through gene expression profiling and gain and loss of function experiments, we identified the matricellular protein CYR61 and aVb5 integrin, as proteins cooperating to mediate these effects. Inhibition of aVb5 integrin suppressed invasion and metastasis induced by CYR61 and attenuated metastasis of tumors growing within a pre-irradiated field. These results represent a conceptual advance to the understanding of the tumor bed effect and identify CYR61 and aVb5 integrin as proteins that co-operate to mediate metastasis. They also indicate aV integrin inhibition a potential therapeutic approach for preventing metastasis in patients at risk for post-radiation recurrences, which can be promptly tested in the clinic.
CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
VEGF-B signaling impairs endothelial glucose transcytosis by decreasing membrane cholesterol content.
Age, Specimen part, Cell line, Treatment
View SamplesRegulation of endothelial nutrient transport is poorly understood. Vascular endothelial growth factor (VEGF)-B signaling in endothelial cells promotes uptake and transcytosis of fatty acids (FA) from the bloodstream to the underlying tissue, advancing pathological lipid accumulation and lipotoxicity in diabetic complications. Here we demonstrate a VEGF-B dependent obstruction of endothelial glucose transport attributed to plasma membrane lipid alterations affecting glucose transporter 1 function, which was independent of FA uptake. Specifically, VEGF-B signaling impaired recycling of low-density lipoprotein receptor to the plasma membrane, leading to reduced cholesterol uptake and membrane cholesterol loading, decreasing endothelial glucose uptake capacity. Inhibiting VEGF-B in vivo was accordingly linked to reconstitution of membrane cholesterol and induction of glucose uptake, of particular relevance for conditions inferring insulin resistance and diabetic complications. In summary, our study reveals a novel mechanism of action for VEGF-B in endothelial nutrient uptake and highlights the impact of membrane cholesterol for the regulation of endothelial glucose transport.
VEGF-B signaling impairs endothelial glucose transcytosis by decreasing membrane cholesterol content.
Specimen part, Cell line, Treatment
View SamplesRegulation of endothelial nutrient transport is poorly understood. Vascular endothelial growth factor (VEGF)-B signaling in endothelial cells promotes uptake and transcytosis of fatty acids (FA) from the bloodstream to the underlying tissue, advancing pathological lipid accumulation and lipotoxicity in diabetic complications. Here we demonstrate a VEGF-B dependent obstruction of endothelial glucose transport attributed to plasma membrane lipid alterations affecting glucose transporter 1 function, which was independent of FA uptake. Specifically, VEGF-B signaling impaired recycling of low-density lipoprotein receptor to the plasma membrane, leading to reduced cholesterol uptake and membrane cholesterol loading, decreasing endothelial glucose uptake capacity. Inhibiting VEGF-B in vivo was accordingly linked to reconstitution of membrane cholesterol and induction of glucose uptake, of particular relevance for conditions inferring insulin resistance and diabetic complications. In summary, our study reveals a novel mechanism of action for VEGF-B in endothelial nutrient uptake and highlights the impact of membrane cholesterol for the regulation of endothelial glucose transport.
VEGF-B signaling impairs endothelial glucose transcytosis by decreasing membrane cholesterol content.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Estrogen Receptor α Promotes Breast Cancer by Reprogramming Choline Metabolism.
Specimen part, Cell line
View SamplesEstrogen receptor (ER) is a key regulator of breast growth and breast cancer development. However, the role of ER in metabolic reprogramming, a hallmark of cancer, is not well documented. In this study, using an integrated approach combining genome-wide mapping of chromatin bound ER with estrogen induced transcript and metabolic profiling, we demonstrate that ER reprograms metabolism upon estrogen stimulation, including changes in aerobic glycolysis, nucleotide and amino acid synthesis, and choline metabolism. We show, for the first time, that the ER target gene choline phosphotransferase 1 (CHPT1) plays an essential role in estrogen induced increases in phosphatidylcholine (PtdCho) levels and that CHPT1 promotes tumorigenesis and proliferation. Furthermore, we show that CHPT1 is overexpressed in tumors compared to normal breast. We also demonstrate that ER promotes aerobic glycolysis through increased expression of glycolytic genes. In conclusion, this study highlights the importance of ER for metabolic alterations in breast cancer cells. Furthermore, overexpression of the ER target CHPT1 in breast cancer supports its potential as a therapeutic target.
Estrogen Receptor α Promotes Breast Cancer by Reprogramming Choline Metabolism.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrated epigenetics of human breast cancer: synoptic investigation of targeted genes, microRNAs and proteins upon demethylation treatment.
Treatment
View SamplesThe contribution of aberrant DNA methylation and the downstream effects in tumorogenesis through silencing of tumor suppressor genes (TSGs) and microRNAs has been investigated. Since these epigenetic alterations can be reversed, we investigated the effects of the epigenetic therapy in breast cancer cell lines.
Integrated epigenetics of human breast cancer: synoptic investigation of targeted genes, microRNAs and proteins upon demethylation treatment.
Treatment
View Samples