Aire in medullary thymic epithelial cells plays an essential role in the negative selection through expression of broad arrays of tissue-restricted antigens.
Ectopic Aire Expression in the Thymic Cortex Reveals Inherent Properties of Aire as a Tolerogenic Factor within the Medulla.
Specimen part, Disease
View SamplesTGF-b is an important pleiotropic cytokine with potent immunoregulatory properties. Although many previous reports have been proposed for the immunoregulatory functions of TGF-b on T cells, such as the suppression of cell proliferation, cytokine production and cytokine signaling, as well as the induction of apoptosis, it is not well elucidated whether the each effect of TGF-b on T cells is dependent on Smad signaling or Smad-independent other signaling pathways.
Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development.
Specimen part, Treatment
View SamplesInnate immune cells control acute eosinophilic lung inflammation induced by cystein proteases. Here we characterize the dynamic change of gene expression profile in basophils, natural helper cells and eosinophils during lung inflammation via cystein protease Overall design: Examination of mRNA levels in individual cell populations, basophils, natural helper cells and eosinophils of the lung from naïve mice and papain treated mice.
Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation.
No sample metadata fields
View SamplesmRNA degradation critically contributes to tissue development and function as well as transcription. The CCR4-NOT complex serves as a major deadenylase that initiates mRNA degradation.
Adipocyte-specific disruption of mouse Cnot3 causes lipodystrophy.
Age, Specimen part
View SamplesPseudomonas aeruginosa use quorum-sensing molecules, including N-(3-oxododecanoyl)-homoserine lactone (C12), for intercellular communication. C12 activated apoptosis in mouse embryo fibroblasts (MEF) from both wild type (WT) and Bax/Bak double knock-out mice (WT MEF and DKO MEF that were responsive to C12, DKOR MEF): nuclei fragmented; mitochondrial membrane potential (??mito) depolarized; Ca2+ was released from the endoplasmic reticulum (ER), increasing cytosolic [Ca2+] (Cacyto); caspase 3/7 was activated. DKOR MEF had been isolated from a nonclonal pool of DKO MEF that were non-responsive to C12 (DKONR MEF). RNAseq analysis, qPCR and western blots showed that WT and DKOR MEF both expressed genes associated with cancer, including paraoxonase 2 (PON2), while DKONR MEF expressed little PON2. Adenovirus-mediated expression of human PON2 in DKONR MEF rendered them responsive to C12: ??mito depolarized, Cacyto increased and caspase 3/7 activated. Human embryonic kidney 293T (HEK293T) cells expressed low levels of endogenous PON2, and these cells were also less responsive to C12. Overexpression of PON2, but not PON2-H114Q (no lactonase activity) in HEK293T cells caused them to become sensitive to C12. Because [C12] may reach high levels in biofilms in lungs of cystic fibrosis (CF) patients, PON2 lactonase activity may control ??mito, Ca2+ release from the ER and apoptosis in CF airway epithelia. Coupled with previous data, these results also indicate that PON2 uses its lactonase activity to prevent Bax- and Bak-dependent apoptosis in response to common proapoptotic drugs like doxorubicin, staurosporine but activates Bax- and Bak-independent apoptosis in response to C12. Overall design: Gene expression profiling of mouse embryo fibroblasts from WT and Bax/Bak double knock-out mice (C12 responsive and non-reponsive cell lines).
Paraoxonase 2 serves a proapopotic function in mouse and human cells in response to the Pseudomonas aeruginosa quorum-sensing molecule N-(3-Oxododecanoyl)-homoserine lactone.
No sample metadata fields
View SamplesInduced pluripotent stem cells (iPSCs) are a promising source for cell-based therapy to treat Parkinson's disease (PD), in which midbrain dopaminegic (DA) neurons progressively degenerate. However, long-term analysis of human iPSC-derived DA neurons in primate PD models has never been performed. Here we show that DA progenitor cells derived from iPSCs of both healthy individuals and PD patients survived well in the brains of PD model primates and improved animal behavior. Magnetic resonance and positron emission tomography were useful to monitor the survival and function of the DA neurons. Score-based and video-recording analyses revealed an increase in spontaneous movement of the monkeys after transplantation. Histological studies showed that the mature DA neurons extended dense neurites into the host striatum. In addition, we never observed tumor formation for two years. Thus, this preclinical study using primate models indicates that human iPSC-derived DA progenitors are clinically applicable to treat PD patients.
Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model.
Specimen part
View SamplesHepatic iron overload is a risk factor for progression of hepatocellular carcinoma (HCC), although the molecular mechanisms underlying this association have remained unclear. We now show that the iron-sensing ubiquitin ligase FBXL5 is previously unrecognized oncosuppressor in liver carcinogenesis in mice. Hepatocellular iron overload evoked by FBXL5 ablation gives rise to oxidative stress, tissue damage, inflammation and compensatory proliferation in hepatocytes and to consequent promotion of liver carcinogenesis induced by exposure to a chemical carcinogen. The tumor-promoting effect of FBXL5 deficiency in the liver is also operative in a model of virus-induced HCC. FBXL5-deficient mice thus constitute the first genetically engineered mouse model of liver carcinogenesis induced by iron overload. Dysregulation of FBXL5-mediated cellular iron homeostasis was also found to be associated with poor prognosis in human HCC, implicating FBXL5 plays a significant role in defense against hepatocarcinogenesis. Overall design: Total RNA was extracted from the nontumor and tumor tissue of an Alb-Cre/Fbxl5F/F male mouse (nontumor, n = 5; tumor, n = 5) or two littermate control Fbxl5F/F mice (nontumor, n = 6; tumor, n = 6) at 45 weeks of age.
Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis.
Specimen part, Cell line, Subject
View SamplesReduced cancer incidence has been reported among type II diabetics treated with metformin. Metformin exhibits anti-proliferative and anti-neoplastic effects associated with inhibition of mTORC1, but the mechanisms are poorly understood. We provide the first genome-wide analysis of translational targets of canonical mTOR inhibitors (rapamycin and PP242) and metformin, revealing that metformin controls gene expression at the level of mRNA translation to an extent comparable to that of canonical mTOR inhibitors. Importantly, metformin's anti-proliferative activity can be explained by selective translational suppression of mRNAs encoding cell cycle regulators via the mTORC1/4E-BP pathway. Thus, metformin selectively inhibits mRNA translation of encoded proteins that promote neoplastic proliferation, motivating further studies of this compound and related biguanides in cancer prevention and treatment.
Distinct perturbation of the translatome by the antidiabetic drug metformin.
Cell line, Treatment
View SamplesWe found that a number of Tfh cells downmodulated BCL6 protein after their development, and we sought to compare the gene expression between BCL6-hi Tfh cells and BCL6-low Tfh cells.
Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity.
Specimen part
View SamplesTranslation is a critical cellular process to synthesize proteins from their transcripts. However, translational regulation in antigen-specific T cells in vivo has not been well defined.
Translation is actively regulated during the differentiation of CD8<sup>+</sup> effector T cells.
Sex, Specimen part
View Samples