Analyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.
Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
No sample metadata fields
View SamplesAnalyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.
Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
No sample metadata fields
View SamplesAnalyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.
Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
No sample metadata fields
View SamplesHuntingtons disease (HD) is a dominantly inherited genetic disease caused by mutant huntingtin (htt) protein with expanded polyglutamine tracts. A neuropathological hallmark of HD is the presence of neuronal inclusions of mutant htt. p62 is an important regulatory protein in selective autophagy, a process by which aggregated proteins are degraded, and it is associated with several neurodegenerative disorders including HD. Here we investigated the effect of p62 depletion in three HD model mice: R6/2, HD190QG and HD120QG mice. We found that loss of p62 in these models led to longer lifespans and reduced nuclear inclusions, although cytoplasmic inclusions increased with polyglutamine length. In mouse embryonic fibroblasts (MEFs) with or without p62, mutant htt with a nuclear localization signal (NLS) showed no difference in nuclear inclusion between the two MEF types. In the case of mutant htt without NLS, however, p62 depletion increased cytoplasmic inclusions. Furthermore, to examine the effect of impaired autophagy in HD model mice, we crossed R6/2 mice with Atg5 conditional knockout mice. These mice also showed decreased nuclear inclusions and increased cytoplasmic inclusions, similar to HD mice lacking p62. These data suggest that the genetic ablation of p62 in HD model mice enhances cytoplasmic inclusion formation by interrupting autophagic clearance of polyQ inclusions. This reduces polyQ nuclear influx and paradoxically ameliorates disease phenotypes by decreasing toxic nuclear inclusions.
Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntington's model mice.
No sample metadata fields
View SamplesMast cells, basophils, and eosinophils play an important role in allergic disorders as effector cells. These cells secrete abundant serine proteases as well as chemical mediators and cytokines. Various serine proteases including SLPI are also important for to regulate an allergic response in these effector cells, although the expression profiles and functions of these proteases still remain unclear.
Identification of Secretory Leukoprotease Inhibitor As an Endogenous Negative Regulator in Allergic Effector Cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer.
Specimen part, Cell line
View SamplesSmall cell lung cancer (SCLC) is a subtype of lung cancer with poor prognosis due to early dissemination and rapid growth. We here analyze gene expression profile of 23 clinical SCLC samples. EZH2 was found to be highly expressed in SCLC samples compared to 42 normal tissues including the normal lung, and other PRC2 members, SUZ12 and EED, were also highly expressed in SCLC. To obtain target genes of PRC2 in SCLC, H3K27me3 mark was mapped in three SCLC cell lines, Lu130, H209 and DMS53, and compared to normal small airway epithelial cells (SAEC). Whereas H3K27me3(+) genes in SAEC were significantly overlapped with PRC-target genes in ES cells (P=1.7x10-31), genes with H3K27me3 in SCLC cell lines but not in SAEC were not significantly overlapped with PRC-target genes in ES cells (P=0.64). These genes with H3K27me3 specifically in SCLC cell lines but not in SAEC showed decreased expression, not only in SCLC cell lines but also in clinical SCLCs, and showed enrichment of GO-terms such as plasma membrane (P=8.1x10-21) and cell adhesion (P=1.7x10-8). Introduction of JUB, a gene showing specific H3K27me3 modification and the strongest repression in the three SCLC cell lines, resulted in repression of cellular growth in DMS53. In clinical SCLC cases, lower JUB level correlated to shorter survival (P=0.002), or a set of PRC target genes (JUB, EPHB4) and marker genes of classic type SCLC (GRP, ASCL1) correlated to shorter survival (P=0.0001) and classified SCLC into two groups with distinct prognosis. Growth of SCLC cell lines was repressed when treated with 3-Deazaneplanocin A, an inhibitor against PRC2. It is suggested that high expression of PRC2 in SCLC contributed to repression of genes including non-PRC-target genes in ES cells, and that the gene repression may play a role in genesis of SCLC.
PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer.
Specimen part, Cell line
View SamplesAnalysis of alternative splicing in heart (left ventricles) samples of 3 adult DM1 patients versus 3 adult controls Overall design: PolyA RNA from left ventricles (heart) of 3 controls and 3 DM1 patients were analysed by massive parrallel sequencing
Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy.
No sample metadata fields
View SamplesAnalysis of alternative splicing of left ventricles heart samples of 3 DM1 adult versus 3 adult controls
Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy.
Specimen part, Disease, Disease stage
View Samples