Bladder cancer (BC) is a highly prevalent human disease in which Rb pathway inactivation and epigenetic alterations are common events. However, the connection between these two processes is still poorly understood. Here we show that the in vivo inactivation of all Rb family genes in the mouse urothelium is sufficient to initiate BC development. The characterization of the mouse tumors revealed multiple molecular features of human BC, including the activation of E2F transcription factor and subsequent Ezh2 expression, and the activation of several signaling pathways previously identified as highly relevant in urothelial tumors. Whole transcriptional characterizations of the mouse bladder tumors revealed a significant overlap with human BC samples, and a predominant role for Ezh2 in the downregulation of gene expression programs. Importantly, we determined that in human superficial BC patients, the increased tumor recurrence and progression in these recurrences is associated with increased E2F and Ezh2 expression and Ezh2-mediated gene expression repression. Collectively, our studies provide a genetically defined model for human high-grade superficial BC and demonstrate the existence of an Rb-E2F-Ezh2 axis in bladder whose disruption can promote tumor development.
In vivo disruption of an Rb-E2F-Ezh2 signaling loop causes bladder cancer.
Specimen part, Disease, Treatment
View SamplesThe liver is one of the most sexually dimorphic organs as measured by gene expression differences. About 80% of the sexually dimorphic genes are known to be regulated by growth hormone (GH). Somatostatin (SST) inhibits the release of GH.
Somatostatin is essential for the sexual dimorphism of GH secretion, corticosteroid-binding globulin production, and corticosterone levels in mice.
Sex, Specimen part
View SamplesANGPTL4 regulates plasma triglyceride levels by inhibiting lipoprotein lipase. Inactivation of ANGPTL4 decreases plasma triglycerides and reduces risk of coronary artery disease. Unfortunately, targeting ANGPTL4 for the therapeutic management of dyslipidemia and atherosclerosis is hampered by the observation that mice and monkeys in which ANGPTL4 is inactivated exhibit lipid accumulation in mesenteric lymph nodes. In mice these pathological events exclusively unfold upon feeding a high saturated fatty acid diet and are followed by an ultimately lethal pro-inflammatory response and chylous ascites. Here we show that Angptl4-/- mice fed a diet rich in trans fatty acids develop numerous lipid-filled giant cells in their mesenteric lymph nodes, yet do not have elevated serum amyloid and haptoglobin, do not exhibit ascites, and survive, unlike Angptl4-/- mice fed a saturated fatty acid-rich diet. In RAW264.7 macrophages the saturated fatty acid palmitate markedly increases markers of inflammation and the unfolded protein response, whereas the trans-unsaturated elaidate and the cis-unsaturated oleate have the opposite effect. In conclusion, trans and saturated fatty acids have very distinct biological effects. Furthermore, lipid accumulation in mesenteric lymph nodes is uncoupled from activation of an acute-phase response and chylous ascites, suggesting that ANGPTL4 should not be fully dismissed as target for dyslipidemia.
Feeding <i>Angptl4</i><sup>-/-</sup> mice <i>trans</i> fat promotes foam cell formation in mesenteric lymph nodes without leading to ascites.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease.
Treatment
View SamplesScope: Consumption of industrial trans fatty acids unfavourably alters plasma cholesterol and has been linked to NAFLD. However, the mechanisms underlying these deleterious effects of trans fatty acids are unclear. Here, we aim to investigate the molecular mechanisms of action of industrial trans fatty acids. Methods & Results: Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells showed that elaidate but not oleate or palmitate induced expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate was mediated by increased SREBP2 and dependent on SCAP, yet independent of LXR and UBXD8. Elaidate decreased intracellular free cholesterol levels and repressed the anti-cholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increased the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, ALT activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. Conclusion: Elaidate induces cholesterogenesis in vitro via activation of the SCAP-SREBP axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.
Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease.
No sample metadata fields
View SamplesScope: Consumption of industrial trans fatty acids unfavourably alters plasma cholesterol and has been linked to NAFLD. However, the mechanisms underlying these deleterious effects of trans fatty acids are unclear. Here, we aim to investigate the molecular mechanisms of action of industrial trans fatty acids. Methods & Results: Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells showed that elaidate but not oleate or palmitate induced expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate was mediated by increased SREBP2 and dependent on SCAP, yet independent of LXR and UBXD8. Elaidate decreased intracellular free cholesterol levels and repressed the anti-cholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increased the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, ALT activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. Conclusion: Elaidate induces cholesterogenesis in vitro via activation of the SCAP-SREBP axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.
Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease.
Treatment
View SamplesScope: Consumption of industrial trans fatty acids unfavourably alters plasma cholesterol and has been linked to NAFLD. However, the mechanisms underlying these deleterious effects of trans fatty acids are unclear. Here, we aim to investigate the molecular mechanisms of action of industrial trans fatty acids. Methods & Results: Hepa1-6 hepatoma cells were incubated with elaidate, oleate, or palmitate. C57Bl/6 mice were fed diets rich in trans-unsaturated, cis-unsaturated or saturated fatty acids. Transcriptomics analysis of Hepa1-6 cells showed that elaidate but not oleate or palmitate induced expression of genes involved in cholesterol biosynthesis. Induction of cholesterogenesis by elaidate was mediated by increased SREBP2 and dependent on SCAP, yet independent of LXR and UBXD8. Elaidate decreased intracellular free cholesterol levels and repressed the anti-cholesterogenic effect of exogenous cholesterol. In mice, the trans-unsaturated diet increased the ratio of liver to gonadal fat mass, steatosis, hepatic cholesterol levels, ALT activity, and fibrosis markers, suggesting enhanced NAFLD, compared to the cis-unsaturated and saturated diets. Conclusion: Elaidate induces cholesterogenesis in vitro via activation of the SCAP-SREBP axis, likely by lowering intracellular free cholesterol and attenuating cholesterol-dependent repression of SCAP. This pathway potentially underlies the increase in liver cholesterol and NAFLD by industrial trans fatty acids.
Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease.
Treatment
View SamplesPancreatic islet transplantation was performed in the subcutaneous space of diabetic nude mice. In order to promote long survival and function of transplanted islets a plasma-based scaffold was developed in combination with fibroblasts as graft-supporting accesory cells. Gene expression analysis was carried out to evaluate expression differences due to the presence of fibroblast which could explain the long-term glycemic control observed under these circumstances.
Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation.
Disease, Time
View SamplesNeuroblastoma (NBL) is an embryonal cancer of the sympathetic nervous system (SNS) that causes 15% of pediatric cancer deaths. High-risk neuroblastoma is characterized by N-Myc amplification and segmental chromosomal gains and losses. Due to limited disease models, the etiology of neuroblastoma is largely unknown, including both the cell of origin and the majority of oncogenic drivers. We have established a novel system for studying neuroblastoma based on the transformation of neural crest cells (NCCs), the progenitor cells of the SNS, isolated from mouse embryonic day 9.5 trunk neural tube explants. Based on pathology and gene expression analysis, we report the first successful transformation of wild-type NCCs into NBL by enforced expression of N-Myc to generate phenotypically and molecularly accurate tumors that closely model human MYCN-amplified NBL. Using comparative genomic hybridization, we found that NCC-derived neuroblastoma tumors acquired copy number gains and losses that are syntenic to those observed in human MYCN-amplified neuroblastoma including 17q gain, 2p gain and loss of 1p36. When p53-compromised NCCs were transformed with N-Myc we generated primitive neuroectodermal tumors with divergent differentiation including osteosarcoma. These subcutaneous tumors were metastatic to regional lymph nodes, liver and lung. Our novel experimental approach accurately models human neuroblastoma and establishes a new system with potential to study early stages of neuroblastoma oncogenesis, to functionally assess neuroblastoma oncogenic drivers, and to characterize neuroblastoma metastasis.
MYCN induces neuroblastoma in primary neural crest cells.
Specimen part
View SamplesIdentify genes which are induced in wild type, crel ko, and relbcrle dbko B cells under BAFF stimulation, and find the differential expressed genes which are distinct from wildtype controls. Overall design: RNA-seq analysis of wild type, crelko, relbcrel dbko follicular B cells stimulated with BAFF ligand for 6 hours and wildtype only for 27 hours
B-cell survival and development controlled by the coordination of NF-κB family members RelB and cRel.
No sample metadata fields
View Samples