refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 313 results
Sort by

Filters

Technology

Platform

accession-icon GSE16452
Human BE(2)-C neuronal responses to type I IFN stimulation and WEEV infection
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE16450
Human BE(2)-C neuronal responses to type I IFN stimulation
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human neuronal differentiation alters responsiveness to innate immune stimuli and virus infections.

Publication Title

Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE16451
Human BE(2)-C neuronal responses to WEEV infection
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human neuronal differentiation alters responsiveness to innate immune stimuli and virus infections.

Publication Title

Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP174621
Integrative analysis identifies lincRNAs up- and downstream of neuroblastoma driver genes (PHOX2B)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Long intergenic non-coding RNAs (lincRNAs) are emerging as integral components of signaling pathways in various cancer types. In neuroblastoma, only a handful of lincRNAs are known as upstream regulators or downstream effectors of oncogenes. Here, we exploit RNA sequencing data of primary neuroblastoma tumors, neuroblast precursor cells, neuroblastoma cell lines and various cellular perturbation model systems to define the neuroblastoma lincRNome and map lincRNAs up- and downstream of neuroblastoma driver genes MYCN, ALK and PHOX2B. Each of these driver genes controls the expression of a particular subset of lincRNAs, several of which are associated with poor survival and are differentially expressed in neuroblastoma tumors compared to neuroblasts. By integrating RNA sequencing data from both primary tumor tissue and cancer cell lines, we demonstrate that several of these lincRNAs are expressed in stromal cells. Deconvolution of primary tumor gene expression data revealed a strong association between stromal cell composition and driver gene status, resulting in differential expression of these lincRNAs. We also explored lincRNAs that putatively act upstream of neuroblastoma driver genes, either as presumed modulators of driver gene activity, or as modulators of effectors regulating driver gene expression. This analysis revealed strong associations between the neuroblastoma lincRNAs MIAT and MEG3 and MYCN and PHOX2B activity or expression. Together, our results provide a comprehensive catalogue of the neuroblastoma lincRNome, highlighting lincRNAs up- and downstream of key neuroblastoma driver genes. This catalogue forms a solid basis for further functional validation of candidate neuroblastoma lincRNAs. Overall design: CLB-GA was transduced with control or inducible shPHOX2B. The cells were treated with doxycycline for 5 days.

Publication Title

Integrative analysis identifies lincRNAs up- and downstream of neuroblastoma driver genes.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE34652
KGF effects on cutaneous SCC cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin.

Publication Title

Keratinocyte growth factor induces gene expression signature associated with suppression of malignant phenotype of cutaneous squamous carcinoma cells.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE66368
EphB2 promotes progression of cutaneous squamous cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE66359
Analysis of the gene expression profile in normal human epidermal keratinocytes and cutaneous squamous cell carcinoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The incidence of keratinocyte-derived skin cancer, cutaneous squamous cell carcinoma (cSCC) is increasing worldwide making it the second most common metastatic skin cancer.

Publication Title

EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE66361
Analysis of the gene expression profile in cutaneous squamous cell carcinoma cells after EphB2 knockdown
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The role of Eph/ephrin signaling in numerous biological processes has been established. However, Eph/ephrin signaling has been shown to have complex role in tumor progression. The role of EphB2 receptor in the progression of cutaneous squamous cell carcinoma (cSCC) has not been studied before.

Publication Title

EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP032928
Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21 [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Down syndrome (trisomy 21) is the most common viable chromosomal disorder with intellectual impairment and several other developmental abnormalities. Here, we report the generation and characterization of induced pluripotent stem cells (iPSCs) derived from monozygotic twins discordant for trisomy 21 in order to eliminate the effects of the variability of genomic background. The alterations observed by genetic analysis at the iPSC level and at first approximation in early development illustrate the developmental disease transcriptional signature of Down syndrome. Moreover, we observed an abnormal neural differentiation of Down syndrome iPSCs in vivo when formed teratoma in NOD-SCID mice, and in vitro when differentiated into neuroprogenitors and neurons. These defects were associated with changes in the architecture and density of neurons, astroglial and oligodendroglial cells together with misexpression of genes involved in neurogenesis, lineage specification and differentiation. Furthermore, we provide novel evidence that dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) on chromosome 21 likely contribute to these defects. Importantly, we found that targeting DYRK1A pharmacologically or by shRNA results in a considerable correction of these defects. Overall design: mRNA-seq profiling of iPS cells (4 euploid and 3 trisomy 21) derived from fibroblasts of monozygotic twins discordant for trisomy 21

Publication Title

Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19748
Gene expression screening during early granulation tissue formation (I)
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Hydroxyapatite-coated cellulose induces a quicker and stronger inflammatory response compared to uncoated cellulose. Furthermore, the coated cellulose increases the homing at circulating bone-marrow derived progenitor cells. For this reason, Illumina microarray was used to study the early gene expression of the forming granulation tissue in the hydroxyapatite-coated sponges.

Publication Title

Hemoglobin expression in rat experimental granulation tissue.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact