refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 389 results
Sort by

Filters

Technology

Platform

accession-icon GSE64123
Human embryonic stem cell based neuro-developmental toxicity assay: response to valproic acid and carbamazepine exposure
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Here we studied the effects of anticonvulsant drug exposure in a human embryonic stem cell (hESC) based neuro- developmental toxicity test (hESTn). During neural differentiation the cells were exposed, for either 1 or 7 days, to non-cytotoxic concentration ranges of valproic acid (VPA) or carbamazepine (CBZ), anti-epileptic drugs known to cause neurodevelopmental toxicity.

Publication Title

Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay.

Sample Metadata Fields

Time

View Samples
accession-icon SRP077927
An inducible and reversible embryonic stem cell biobank reveals functional genomic pathways and disease targets [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Clonal cellular variance often confounds reproducibility of forward and reverse genetic studies. We developed combinatorial approaches for whole genome saturated mutagenesis using haploid murine ES cells to permit induction and reversion of genetic mutations. Using these systems, we created a biobank with over 100000 individual ES cell lines with repairable and genetically bar coded mutations targeting 16950 genes. This biobank termed “Haplobank” is freely available. In addition, we developed a genetic color coding system for rapid repair of mutations and direct functional validation in sister clones. Using this system, we report functional validation of essential ES cell genes. We also identified phospholipase16G as a key pathway for cytotoxicity of human rhinoviruses, the most frequent cause of the common cold. Moreover, we derived 3D blood vessel organoids from haploid ES cells, combining conditional mutagenesis in haploid ES cells with tissue engineering. We identified multiple novel genes, such as Connexin43/Gja1, in blood vessel formation and tip cell specification in vitro and also in vivo. Taken together, we develop a conditional homozygous ES cell resource for the community to empower controlled genetic studies in murine ES cells and tissues derived from it. Overall design: RNA-Seq was carried out using standard protocols. https://www.haplobank.at/ecommerce/control/haplobank_resource

Publication Title

Comparative glycoproteomics of stem cells identifies new players in ricin toxicity.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE55618
Toxicogenomic profiling in the whole zebrafish embryo after exposure to reference hepatotoxicants.
  • organism-icon Danio rerio
  • sample-icon 188 Downloadable Samples
  • Technology Badge Icon Affymetrix Genechip Zebrafish ST Genome Array 1.1 (zebgene11st)

Description

Zebrafish embryos have been proposed as an attractive alternative model system for hepatotoxicity testing.

Publication Title

A transcriptomics-based hepatotoxicity comparison between the zebrafish embryo and established human and rodent in vitro and in vivo models using cyclosporine A, amiodarone and acetaminophen.

Sample Metadata Fields

Compound

View Samples
accession-icon SRP087634
Transcriptome analysis of Listeria monocytogenes infected bone marrow derived macrophages with or without DEAD-box helicase DDX3X
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Bone marrow derived macrophages were infected with Listeria monocytogenes for 4 hours. We investigated differently expressed genes in the absence of DDX3X upon infection and also in steady state conditions. Overall design: Investigation of gene expression in wt and Ddx3x deficient bone marrow derived macrophages in response to Listeria monocytogenes infection.

Publication Title

The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP047363
Comparison of human PRDM12 mutants D31Y and E172D with wildtype fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Fibroblasts from PRDM12 patients and unaffected wildtype relatives were cultured until near confluency. The transcriptional profile of those cells was determined by mRNA sequencing and uncovered differential expression in several known pain and neurodevelopmental genes. Overall design: Transcriptome comparison of human PRDM12 mutant and wildtype fibroblasts

Publication Title

The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP020625
Holo-TFIID controls the magnitude of a transcription burst and fine-tuning of transcription.
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

TFIID is a central player in activated transcription initiation. Recent evidence suggests that the role and composition of TFIID is more diverse than previously understood. To investigate the effects of changing the composition of TFIID in a simple system we depleted TAF1 from Drosophila cells and determined the consequences on metal induced transcription at an inducible gene, Metallothionein B (MtnB). We observe a marked increase in the levels of both the mature message and pre-mRNA in TAF1 depleted cells. Under conditions of continued metal exposure, we show that TAF1 depletion increases the magnitude of the initial transcription burst, but has no effect on the timing of that burst. We also show that TAF1 depletion causes delay in the shut-off of transcription upon removal of the stimulus. Thus TAFs are involved in both establishing an upper limit of transcription during induction and efficiently turning the gene off once the inducer is removed. Using genomewide nascent-seq we identify hundreds of genes that are controlled in a similar manner indicating that the findings at this inducible gene are likely generalizable to a large set of promoters. There is a long-standing appreciation for the importance of the spatial and temporal control of transcription. Here we uncover an important third dimension of control, the magnitude of the response. Our results show that the magnitude of the transcriptional response to the same signaling event, even at the same promoter, can vary greatly depending on the composition of the TFIID complex in the cell. Overall design: Nascent RNA was sequenced from replicate samples of Drosophila S2 cells treated with double-stranded RNA directed against E. coli LacI (Control) or against Drosophlia TAF1 (experimental). Reads per kilo-base per million (RPKM) was determined for each gene and the control and experimental samples were compared to determine the genes that were affected by the depletion of TAF1.

Publication Title

Holo-TFIID controls the magnitude of a transcription burst and fine-tuning of transcription.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE18397
Expression profiling of NB4 cells after treatment with ATRA
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

In acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA)

Publication Title

Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia: triggering the differentiation syndrome.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP063830
Sucralose Promote Food Intake Through NPY and A Neuronal Fasting Response
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Non-nutritive sweeteners like sucralose are consumed by billions of people. While animal and human studies have demonstrated a link between synthetic sweetener consumption and metabolic dysregulation, the mechanisms responsible remain unknown. Here we use a diet supplemented with sucralose to investigate the long-term effects of sweet/energy imbalance. In flies, chronic sweet/energy imbalance promoted hyperactivity, insomnia, glucose intolerance, enhanced sweet taste perception and a sustained increase in food and calories consumed, effects that are reversed upon sucralose removal. Mechanistically, this response was mapped to the ancient insulin, catecholamine, and NPF/NPY systems and the energy sensor AMPK, which together comprise a novel neuronal starvation response pathway. Interestingly, chronic sweet/energy imbalance promoted increased food intake in mammals as well, and this also occurs through an NPY-dependent mechanism. Together our data show that chronic consumption of a sweet/energy imbalanced diet triggers a conserved neuronal fasting response and increases the motivation to eat. Overall design: RNA-seq on Drosophila head samples fed control and sucralose diet

Publication Title

Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP165285
RNA-Seq of WT and constitutively methylated mESCs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 550

Description

WT J1 and 3B3L cells (in which Dnmt3B and Dnm3L are constitutively expressed from an exogenous construct) were cultured under both serum/LIF and 2i/LIF conditions. 3B3L cells do not show ground state-associated hypomethylation phenotype. This experiment sought to analyse the gene expression changes between the two conditions. Overall design: Three biological replicates per condition J1 serum, J1 2i, 3B3-3l serum, 3B3-3l 2i.

Publication Title

DNA Methylation Directs Polycomb-Dependent 3D Genome Re-organization in Naive Pluripotency.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP154717
Profiling of vascular organoid endothelial cells and pericytes from iPS cells
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Diabetes is prevalent worldwide and associated with severe health complications, including blood vessel damage that leads to cardiovascular disease and death. Here we report the development of a 3D blood vessel organoid culture system from human pluripotent stem cells. These human blood vessel organoids contain endothelial cells and pericytes that self-assemble into interconnected capillary networks enveloped by a basement membrane. Human blood vessel organoids transplanted into mice form a stable, perfused human vascular tree, including human arteries, arterioles and venules. Exposure of blood vessel organoids to hyperglycemia and inflammatory cytokines in vitro induced thickening of the basal membrane, a hallmark of human diabetic microangiopathy. Human blood vessel, exposed in vivo to a diabetic milieu in mice, also mimick the microvascular changes in diabetic patients. We finally performed a drug screen and uncovered ?-secretase and DLL4-Notch3 as key drivers of “diabetic” vasculopathy in human blood vessels in vitro and in vivo. Thus, organoids derived from human stem cells faithfully recapitulate the structure and function of human blood vessels and are amenable to model and identify drug targets for diabetic vasculopathy, which affects hundreds of millions of patients. Overall design: Vascular organoids were differentiated from iPSC cells and cultured in control, diabetic or diabetic media supplemented with the gamma-secretase inhibitor DAPT. Endothelial cells (CD31 positive) and pericytes (PDGFRbeta positive) were isolated by FACS and subjected to RNA Seq. Accordingly, CD31 positive endothelial cells and PDGFRbeta positive pericytes differentiated from iPS cells in 2D as a well as primary endothelial (HUVECS) and pericytes (Placenta) were FACS sorted and subjected to RNA Seq.

Publication Title

Human blood vessel organoids as a model of diabetic vasculopathy.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact