Recent research has highlighted that the polyphenols Quercetin (Q) and Tannic acid (TA) are capable of extending the lifespan of C. elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to Quercetin or Tannic acid concentrations that are non-effective (in lifespan extension), lifespan extending or toxic.
Meta-Analysis of Global Transcriptomics Suggests that Conserved Genetic Pathways are Responsible for Quercetin and Tannic Acid Mediated Longevity in C. elegans.
Specimen part, Treatment
View SamplesLow concentrations of the dissolved leonardite humic acid HuminFeed (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. Furthermore growth was impaired and reproduction delayed, effects which have also been identified in other polyphenolic monomers, including tannic acid, rosmarinic acid, and caffeic acid. Moreover, a chemical modification of HF (HF-HQ), which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 d) and old adult (11 d) nematodes exposed to two concentrations of HF and young adults (3 d) exposed to two concentrations of HF-HQ.
The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances.
Specimen part, Treatment
View SamplesSelected soil-borne rhizobacteria can trigger an induced systemic resistance (ISR) that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, the root-specific transcription factor MYB72 is required for the onset of ISR, but is also associated with plant survival under conditions of iron deficiency. Here we investigated the role of MYB72 in both processes. To identify MYB72 target genes, we analyzed the root transcriptomes of wild-type Col-0, mutant myb72, and complemented 35S:FLAG-MYB72/myb72 plants in response to ISR-inducing Pseudomonas fluorescens WCS417. Five WCS417-inducible genes were misregulated in myb72 and complemented in 35S:FLAG-MYB72/myb72. Amongst these, we uncovered -glucosidase BGLU42 as a novel component of the ISR signaling pathway. Overexpression of BGLU42 resulted in constitutive disease resistance, whereas bglu42 was defective in ISR. Furthermore, we found 195 genes to be constitutively upregulated in MYB72-overexpressing roots in the absence of WCS417. Many of these encode enzymes involved in the production of iron-mobilizing phenolic metabolites under conditions of iron deficiency. We provide evidence that BGLU42 is required for their release into the rhizosphere. Together, this work highlights a thus far unidentified link between the ability of beneficial rhizobacteria to stimulate systemic immunity and mechanisms induced by iron deficiency in host plants.
β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots.
Specimen part
View SamplesLow reduced red:far-red ratio [R:FR] signaling through phytochromes induces shade avoidance responses, including petiole elongation. Jasmonic acid-mediated defense against herbivores and pathogens is inhibited under these conditions.
Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism.
Specimen part, Treatment
View SamplesTo study differentially expressed genes in neuro-ectodermal cell lines
Downregulation of Axl in non-MYCN amplified neuroblastoma cell lines reduces migration.
Sex, Specimen part
View Samplesp73 is a p53 family transcription factor that plays critical roles during development and tumor suppression. We analyzed p73 activity using a combination of ChIP-on-Chip and gene expression profiling, both at baseline and after treatment with the mTOR inhibitor rapamycin.
Differential regulation of the p73 cistrome by mammalian target of rapamycin reveals transcriptional programs of mesenchymal differentiation and tumorigenesis.
Treatment
View SamplesThe integral role of p53 in tumor suppression has promted many laboratories to perform extensive analyses of signaling pathways downstream of the p53 family of sequence-specific DNA binding transcription factors (p53 and its homologs p63 and p73). Despite the ability of p73 to regulate many p53 family target genes, little is known about the specific pathways that modulate p73 during development, tumorigenesis and tumor therapy. In this study we present a gene signature-based approach for connecting signaling pathways to transcription factors, as exemplified by p73. We generated a p73 gene signature by integrating whole-genome chromatin immunoprecipitation and expression profiling.
A gene signature-based approach identifies mTOR as a regulator of p73.
No sample metadata fields
View SamplesThe integral role of p53 in tumor suppression has promted many laboratories to perform extensive analyses of signaling pathways downstream of the p53 family of sequence-specific DNA binding transcription factors (p53 and its homologs p63 and p73). Despite the ability of p73 to regulate many p53 family target genes, little is known about the specific pathways that modulate p73 during development, tumorigenesis and tumor therapy. In this study we present a gene signature-based approach for connecting signaling pathways to transcription factors, as exemplified by p73. We generated a p73 gene signature by integrating whole-genome chromatin immunoprecipitation and expression profiling.
A gene signature-based approach identifies mTOR as a regulator of p73.
No sample metadata fields
View SamplesLow R:FR signaling through phytochromes induces shade avoidance responses, including petiole elongation. Salicylic acid-mediated defense against pathogens is inhibited under these conditions.
Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis.
Age, Specimen part, Treatment
View SamplesWe used a mouse strain in which one Tbx3 gene was replaced with the yellow fluorescent protein variant Venus. Luminal cells had either very high Tbx3 promoter activity or not at all.
Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium.
No sample metadata fields
View Samples