Thirty to 60% of CD56dimCD16bright NK cells in healthy adults express CD57, which is not expressed on immature CD56bright NK cells or fetal and newborn NK cells. We hypothesized that CD57+ NK cells within the CD56dim mature NK cell subset are highly mature and might be terminally differentiated.
CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset.
Specimen part, Subject
View SamplesAnalysis of T-cells isolated from CD3+ T-cells of patients with B-cell chronic lymphocytic leukemia (B-CLL). In contrast to other types of cancers, the non-malignant T-cell compartment of B CLL patients is expanded. Results provide insights into the role of T-cells in B-CLL.
Expanded CD8+ T cells of murine and human CLL are driven into a senescent KLRG1+ effector memory phenotype.
Specimen part
View SamplesCD8+ T cells and NK cells protect from viral infections by killing virally-infected cells and secreting interferon-g. Several inhibitory receptors limit the magnitude and duration of these anti-viral responses.
The Inhibitory Receptor NKG2A Sustains Virus-Specific CD8⁺ T Cells in Response to a Lethal Poxvirus Infection.
No sample metadata fields
View SamplesAbstract: Immune subversion represents a hallmark of persistent infection, but microbial suppression of B cell responses remains mechanistically ill-defined. Adoptive transfer experiments in a chronic viral infection model evidenced the rapid and profound decimation of B cells that responded to virus or to concomitantly administered protein. Decimation affected naïve and memory B cells and resulted from biased differentiation into short-lived antibody-secreting cells. It was driven by type I interferon (IFN-I) signaling to several cell types including dendritic cells, T cells and myeloid cells. Durable B cell responses were restored upon IFN-I receptor blockade or, partially, when depleting myeloid cells or key IFN-I-induced cytokines. B cell decimation represents a molecular mechanism of humoral immune subversion and reflects an unsustainable “all-in” response of B cells in IFN-I-driven inflammation. Overall design: We adoptively transferred naïve KL25HL cells (LCMV-WE-GP-specific B cells) to aIFNAR- or isotype control-treated syngeneic recipient mice, followed by rLCMV-Cl13/WE-GP. On day 3 of infection, spleen were harvested and proliferated KL25HL B cell progeny (CD45.1+B220+CFSElo) were FACS-sorted and total RNA was processed for RNAseq. n=4
Interferon-driven deletion of antiviral B cells at the onset of chronic infection.
Age, Specimen part, Cell line, Subject
View SamplesNon-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA profile for timecourse of neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124).
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.
Subject
View SamplesNon-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA interacting protein immunoprecipitation with AGO2 for miR-124 target enrichment from neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124) and subsequent sequencing.
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.
Subject
View SamplesUnderstanding the structure and interplay of cellular signalling pathways is one of the great challenges in molecular biology. Boolean Networks can infer signalling networks from observations of protein activation. In situations where it is difficult to assess protein activation directly, Nested Effect Models are an alternative. They derive the network structure indirectly from downstream effects of pathway perturbations. To date, Nested Effect Models cannot resolve signalling details like the formation of signalling complexes or the activation of proteins by multiple alternative input signals. Here we introduce Boolean Nested Effect Models (B-NEM). B-NEMs combine the use of downstream effects with the higher resolution of signalling pathway structures in Boolean Networks. We show that B-NEMs accurately reconstruct signal flows in simulated data. Using B-NEM we then resolve BCR signalling via PI3K and TAK1 kinases in BL2 lymphoma cell lines.
Analyzing synergistic and non-synergistic interactions in signalling pathways using Boolean Nested Effect Models.
Specimen part, Cell line, Treatment
View SamplesPcG protein complex PRC2 is a methyltransferase specific for histone H3 lysine27, and H3K27me3 is essential for stable transcription silencing. Less well known but quantitatively much more important is the genome-wide role of PRC2 that dimethylates ~70% of total H3K27. Here we show that H3K27me2 occurs in inverse proportion to transcriptional activity in genes and intergenic regions and its loss results in global transcriptional derepression proportionally greatest in previously silent or weakly transcribed regions. H3K27me2 levels are controlled by opposing roaming activities of PRC2 and the H3K27 demethylase dUTX. Unexpectedly, we find an equally pervasive distribution of histone H2A ubiquitylated at lysine 118 (H2AK118ub), attributed to the RING1 subunit of PRC1-type complexes. Overall design: Examination of global changes in transcription genome-wide when E(z) is inactivated by monitoring total RNA from E(z) temperature-sensitive cells at 25°C and 31°C in duplicate
Genome-wide activities of Polycomb complexes control pervasive transcription.
Cell line, Subject
View SamplesTip60 is a key histone acetyltransferase (HAT) enzyme that plays a central role in diverse biological processes critical for general cell function, however the chromatin-mediated cell-type specific developmental pathways that are dependent exclusively upon the HAT activity of Tip60 remain to be explored. Here, we investigate the role of Tip60 HAT activity in transcriptional control during multicellular development, in vivo by examining genome-wide changes in gene expression in a Drosophila model system specifically depleted for endogenous dTip60 HAT function. We show that amino acid residue E431 in the catalytic HAT domain of dTip60 is critical for the acetylation of endogenous histone H4 in our fly model in vivo, and demonstrate that dTip60 HAT activity is essential for multicellular development. Moreover, our results uncover a novel role for Tip60 HAT activity in controlling neuronal specific gene expression profiles essential for nervous system function as well as a central regulatory role for Tip60 HAT function in general metabolism.
Microarray analysis uncovers a role for Tip60 in nervous system function and general metabolism.
Specimen part
View SamplesAlveolar macrophages are the first line of defense against pathogens in the lungs of all mammalian species and therefore may constitute an appropriate therapeutic target cell in the treatment and prevention of opportunistic airway infections. Analysis of alveolar macrophages from several species has revealed a unique cellular phenotype and transcriptome, presumably linked to their distinct airway environment and function in host defense. The current study extends these findings to the horse.
Comparative transcriptome analysis of equine alveolar macrophages.
Treatment
View Samples