Human fibroblasts at different population doublings were treated with low amounts of rotenone (mild stress) and compared to untreated fibroblasts. Two different cell lines were used (MRC-5, HFF). Illumina sequencing (HiSeq2000) was applied to generate 50bp single-end reads. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 60 samples: 3 biological replicates for each group: MRC-5 cells at 4 different population doublings (PD) with and without rotenone; HFF cells at 6 different population doublings with and without rotenone
Hormetic effect of rotenone in primary human fibroblasts.
No sample metadata fields
View SamplesComparing gene expression level by Illumina sequencing of fibroblasts after irradiation Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 6 samples, 3 samples per group, 2 groups: 1) MRC-5 cells population doublings (PD) 16 and irradiation (20GY) and 2) HFF cells PD32 and irradiation (20GY)
Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence.
No sample metadata fields
View SamplesComparison of gene expression profiles from C. elegans wildtype strain (N2) treated with L4440 and T25B9.1 RNAi for 5 days after L4 larvae stage. Jena Centre for Systems Biology of Ageing - JenAge (ww.jenage.de) Overall design: 6 samples in 2 groups: N2, L4440 5 days (3 Samples); N2, T25B9.1 5 days (3 Samples)
Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis.
Sex, Age, Specimen part, Cell line, Subject
View SamplesSenescent human fibroblasts were compared to young proliferating fibroblasts. Five different cell lines were compared. Illumina sequencing (HiSeq2000) was applied to generate 50bp single-end reads. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 48 samples: 3 biological replicates for each group: young proliferating and senescent BJ cells; young proliferating and senescent Wi-38 cells; young proliferating and senescent IMR-90 cells; 5 population doubling from young proliferating to senescent cell for HFF and MRC-5 cells
Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq.
No sample metadata fields
View SamplesSo far, the annotation of translation initiation sites (TISs) has been based mostly upon bioinformatics rather than experimental evidence. We adapted ribosomal footprinting to puromycin-treated cells to generate a transcriptome-wide map of TISs in a human monocytic cell line. A neural network was trained on the ribosomal footprints at previously annotated AUG translation initiation codons (TICs), and used for the ab initio prediction of TISs in 5062 transcripts with sufficient sequence coverage. Functional interpretation suggested 2994 novel upstream open reading frames (uORFs) in the 5´ UTR (924 AUG, 2070 near-cognate codons), 1406 uORFs overlapping with the coding sequence (116 AUG, 1290 near-cognate) and 546 N-terminal protein extensions (6 AUG, 540 near-cognate). The TIS detection method was validated on the basis of previously published alternative TISs and uORFs. On average, TICs in newly annotated TISs were significantly more conserved among primates than control codons, both for AUGs (p<10-10) and near-cognate codons (p=3.8×10-3). The derived transcriptome-wide map of novel candidate TISs will help to explain how human proteome diversity is influenced by alternative translation initiation and regulation. Overall design: Examination of translational initiation in human cell lines using ribosomal footprinting
Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting.
Cell line, Treatment, Subject
View SamplesEpigenetic control of neural stem/progenitor cell fate is fundamental to achieve a fully brain architecture. Two intrinsic programs regulate neurogenesis, one by epigenetic-mediated gene transcription and another by cell cycle control. Whether and how these two are coordinated to determine temporally and spatially neural development remains unknown. Here we show that deletion of Trrap (Transcription translation associated protein), an essential cofactor for HAT (histone acetyltransferase), leads to severe brain atrophy due to a combination of cell death and a blockade of neuron production. Specifically, Trrap deletion forces differentiation of apical progenitor (AP) fate into basal progenitors (BP) and neurons thereby limiting the total neurogenic production. Despite Trrap’s general role in transcriptional regulation, a genome-wide transcriptome analysis of neuroprogenitors identified the cell cycle regulators that are specifically affected by Trrap deletion. Furthermore, E2F-dependent recruitment of HAT and transcription factors to the promoter of cell cycle regulators is impaired in Trrap-deleted neuroprogenitors. Consistent with these molecular changes, Trrap deletion lengthens particularly G1 and S phases in APs in vivo. Therefore, our study reveals an essential and a distinct function of Trrap-HAT in regulation of cell cycle progression that is required for proper determination of neuroprogenitor fate. Overall design: Determine gene transcriptions by comparing Trrap-deleted and wild type samples
Trrap-dependent histone acetylation specifically regulates cell-cycle gene transcription to control neural progenitor fate decisions.
Specimen part, Subject
View SamplesZebrafish of two different age groups (12 and 36 months) were treated with low amounts of rotenone (mild stress) and compared to untreated zebrafish. Two different durations were used (3 and 8 weeks). Illumina sequencing (HiSeq2000) was applied to generate 50bp single-end reads. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 68 sample: 3 tissues (brain, liver, skin); 2 age groups (12 and 36 months); controls and rotenone treated samples; 2-6 biological replicates for each group
Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan.
No sample metadata fields
View SamplesComparison of gene expression level by Illumina sequencing of rat skin from young and old animals. We identified differentially expressed genes and provide functional profiles, which give insights into the aging process of short-lived rodents. Overall design: 9 skin samples, 4-5 animals per group, 2 groups: 1) young males, 2) old males
Tissue-, sex-, and age-specific DNA methylation of rat glucocorticoid receptor gene promoter and insulin-like growth factor 2 imprinting control region.
No sample metadata fields
View SamplesComparison of gene expression level by Illumina sequencing of rat liver from young and old animals. We identified differentially expressed genes and provide functional profiles, which give insights into the aging process of short-lived rodents. Overall design: 9 liver samples, 4-5 animals per group, 2 groups: 1) young males, 2) old males
Tissue-, sex-, and age-specific DNA methylation of rat glucocorticoid receptor gene promoter and insulin-like growth factor 2 imprinting control region.
No sample metadata fields
View SamplesBackground: Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects on viability even at lowest concentrations. By contrast and unlike higher concentrations, we here find that exposure to low-dose arsenite promotes growth of cultured mammalian cells. In the nematode C. elegans, low-dose arsenite promotes resistance against thermal and chemical stressors, and extends lifespan of this metazoan, whereas higher concentrations reduce longevity. While arsenite causes a transient increase in reactive oxygen species (ROS) levels in C. elegans, co-exposure to ROS scavengers prevents the lifespan-extending capabilities of arsenite, indicating that transiently increased ROS levels act as transducers of arsenite effects on lifespan, a process known as mitohormesis. The RNA-seq data comprises 2 biological replicates for worms exposed to 100nM Arsenite 48h after L4 and 2 biological replicates of the same age as controls Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 4 samples: 2 mRNA profiles of C.elegans 48h after L4 exposed to Arsenite; 2 mRNA profiles of C.elegans 48h after L4 as controls (H20). The N2 wild type (var. Bristol) strain was used.
Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension.
Specimen part, Treatment, Subject
View Samples