refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 176 results
Sort by

Filters

Technology

Platform

accession-icon GSE15072
Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Several reports have focused on the identification of biological elements involved in the development of abnormal systemic biochemical alterations in chronic kidney disease, but this abundant literature results most of the time fragmented. To better define the cellular machinery associated to this condition, we employed an innovative high-throughput approach based on a whole transcriptomic analysis and classical biomolecular methodologies. The genomic screening of peripheral blood mononuclear cells revealed that 44 genes were up-regulated in both chronic kidney disease patients in conservative treatment (CKD, n=9) and hemodialysis (HD, n=17) compared to healthy subjects (NORM) (p<0.001, FDR=1%). Functional analysis demonstrated that 11/44 genes were involved in the oxidative phosphorylation system (OXPHOS). Western blotting for COXI and COXIV, key constituents of the complex IV of OXPHOS, performed on an independent testing-group (12 NORM, 10 CKD and 14 HD) confirmed the elevated synthesis of these subunits in CKD/HD patients. However, complex IV activity was significantly reduced in CKD/HD patients compared to NORM (p<0.01). Finally, CKD/HD patients presented higher reactive oxygen species and 8-hydroxydeoxyguanosine levels compared to NORM. Taken together these results suggest, for the first time, that CKD/HD patients may have an impaired mitochondrial respiratory system and this condition may be both the consequence and the cause of an enhanced oxidative stress.

Publication Title

Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease.

Sample Metadata Fields

Disease, Treatment, Subject

View Samples
accession-icon GSE14795
Altered modulation of WNT--catenin and PI3K/Akt pathways in IgA nephropathy
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To uncover new molecular mechanisms involved in IgAN pathogenesis, we compared the genomic profiles of 12 IgAN patients with 8 healthy subjects,

Publication Title

Altered modulation of WNT-beta-catenin and PI3K/Akt pathways in IgA nephropathy.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE14630
Effect of Mycophenolic Acid on renal transplant recipients
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Mycophenolic acid (MPA), an immunosuppressive drug widely used in kidney transplantation, has been suggested to have anti-fibrotic effects.

Publication Title

The anti-fibrotic effect of mycophenolic acid-induced neutral endopeptidase.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6357
Activation of human CD8+ T cells in renal cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

BACKGROUND: Mammalian microRNAs (miR) regulate the expression of genes relevant for the development of adaptive and innate immunity against cancer. Since T cell dysfunction has previously been reported in patients with renal cell carcinoma (RCC; clear cell type), we aimed to analyse these immune cells for genetic and protein differences when compared to normal donor T cells freshly after isolation and 35 days after in vitro stimulation (IVS) with HLA-matched RCC tumor cells.

Publication Title

miR-29b and miR-198 overexpression in CD8+ T cells of renal cell carcinoma patients down-modulates JAK3 and MCL-1 leading to immune dysfunction.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Subject, Time

View Samples
accession-icon GSE59337
Malignant-like transformation of normal stem and progenitor cells by myeloid leukemia
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

It has long been known that leukemic cells disrupt normal patterns of blood cell formation, but little is understood about mechanisms. It has generally been assumed that normal hematopoietic stem and progenitor cells (HSPC) are simply out-competed for space by malignant cells. We designed a strategy to determine if leukemic cells alter intrinsic properties and functions of normal HSPCs. Chimeric mice were generated by transplantation of normal marrow and marrow from an inducible transgenic model of chronic myelogenous leukemia (CML). With induction of CML, the composition of the marrow changed dramatically, and normal HSPCs divided more readily and lost their ability to produce lymphocytes. In contrast, only modest changes were recorded in numbers of normal hematopoietic stem cells (HSCs). However, these stem cells were not unscathed, and had reduced reconstitution and self-renewal potential upon transplantation. Interestingly, the normal bystander cells acquired gene expression patterns resembling their neighboring malignant counterparts. This suggested that much of the leukemia signature is mediated by extrinsic factors in the environment.

Publication Title

Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP029738
DNA Topoisomerase 1a Promotes RNA-directed DNA Methylation and Histone Lysine 9 Dimethylation at Transposable Elements in Arabidopsis [RNA-Seq]
  • organism-icon Arabidopsis thaliana
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA-directed DNA methylation (RdDM) is a transcriptional silencing mechanism mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1a (TOP1a) was able to de-repress LUCL by reducing its DNA methylation and H3K9 dimethylation (H3K9me2) levels. Further studies with Arabidopsis top1a mutants showed that TOP1a promotes RdDM by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at transposable elements (TEs). Overall design: 5 small RNA libraries were sequenced

Publication Title

DNA topoisomerase 1α promotes transcriptional silencing of transposable elements through DNA methylation and histone lysine 9 dimethylation in Arabidopsis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP062428
Temporal transcriptomics suggest that twin-peaking genes reset the clock
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The mammalian suprachiasmatic nucleus (SCN) drives daily rhythmic behavior and physiology, yet a detailed understanding of its coordinated transcriptional programmes is lacking. To reveal the true nature of circadian variation in the mammalian SCN transcriptome we combined laser-capture microdissection (LCM) and RNA-Seq over a 24-hour light / dark cycle. We show that 7-times more genes exhibited a classic sinusoidal expression signature than previously observed in the SCN. Another group of 766 genes unexpectedly peaked twice, near both the start and end of the dark phase; this twin-peaking group is significantly enriched for synaptic transmission genes that are crucial for light-induced phase-shifting of the circadian clock. 342 intergenic non-coding RNAs, together with novel exons of annotated protein-coding genes, including Cry1, also show specific circadian expression variation. Overall, our data provide an important chronobiological resource (www.wgpembroke.com/shiny/SCNseq/) and allow us to propose that transcriptional timing in the SCN is gating clock resetting mechanisms. Overall design: Pooled dissected tissue of the suprachiasmatic nucleus from five adult male mice provided one of three replicates for each of six timepoints over a 12:12 light/dark (LD) cycle (ZT2, 6, 10, 14, 18 and 22). Each biological replicate was sequenced over 3 seperate lanes using Illumina HiSeq.

Publication Title

Temporal transcriptomics suggest that twin-peaking genes reset the clock.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP089712
RNA Sequencing of mouse Purkinje cells across postnatal development
  • organism-icon Mus musculus
  • sample-icon 86 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We analyzed Purkinje cell transcriptome dynamics in the developing mouse cerebellum during the first three postnatal weeks, a key developmental period equivalent to the third trimester in human cerebellar development. Our study represents the first detailed analysis of developmental Purkinje cell transcriptomes and provides a valuable dataset for gene network analyses and biological questions on genes implicated in cerebellar and Purkinje cell development. Overall design: Laser capture microdissection was employed to obtain a highly enriched population of cerebellar Purkinje cells. Deep sequencing was performed on RNA isolated from 1000 Purkinje cells at five developmental timepoints (postnatal days P0, P4, P8, P14 and P21) in triplicate.

Publication Title

A gene expression signature in developing Purkinje cells predicts autism and intellectual disability co-morbidity status.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE38333
Genome-wide effects of Pbcas4 knockdown
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We tested the effect iof Pbcas4 knockdown using a specific shRNA on the expression of genes sharing miRNA binding sites in mouse N2A cells.

Publication Title

Evidence for conserved post-transcriptional roles of unitary pseudogenes and for frequent bifunctionality of mRNAs.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP028399
Transcription Start Site analysis of Mouse Ter119+ erythroid cells
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcription Start Site analysis in Mouse Ter119+ erythroid cells Overall design: Strand Specific Paired end NanoCage analysis of Total RNA from Mouse Ter119+ erythroid cells

Publication Title

Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact