Overcoming cellular growth restriction, including the evasion of cellular senescence, is a hallmark of cancer. We report that PAK4 is overexpressed in all human breast cancer subtypes and associated with poor patient outcome. In mice, MMTV-PAK4 overexpression promotes spontaneous mammary cancer, while PAK4 gene depletion delays MMTV-PyMT driven tumors. Importantly, PAK4 prevents senescence-like growth arrest in breast cancer cells in vitro, in vivo and ex vivo, but is not needed in non-immortalized cells, while PAK4 overexpression in untransformed human mammary epithelial cells abrogates H-Ras-V12-induced senescence. Mechanistically, a PAK4 – RELB - C/EBPa axis controls the senescence-like growth arrest and a PAK4 phosphorylation residue (RELB-Se151) is critical for RELB-DNA interaction, transcriptional activity and expression of the senescence regulator C/EBPa. These findings establish PAK4 as a promoter of breast cancer that can overcome oncogene-induced senescence and reveal a selective vulnerability of cancer to PAK4 inhibition. Overall design: We quantify transcription via high-throughput RNA sequencing in two human breast cancer cell lines (BT-549 and Hs578T) 72hrs after transient transfection with control (siControl) or PAK4-targetting siRNA.
PAK4 suppresses RELB to prevent senescence-like growth arrest in breast cancer.
Specimen part, Cell line, Subject
View SamplesTo investigate the cellular responses induced by air pollution exposures, we performed genome-wide gene expression microarray analysis using whole blood RNA sampled at three time-points across the work weeks of 63 non-smoking employees in the trucking industry. Our objective was to identify the genes and gene networks differentially activated in response to micro-environmental measures of occupational exposure to three pollutants: PM2.5 (particulate matter 2.5 microns in diameter) and elemental carbon (EC) and organic carbon (OC).
Gene expression network analyses in response to air pollution exposures in the trucking industry.
No sample metadata fields
View SamplesHere we characterize the changes in the forebrain transcriptome resulting from the deletion of the transcription factor Lhx6, generated by RNA-seq technology with biologic replication. Lhx6 is an essential regulatory gene in the development of cortical interneurons generated in the medial ganglionic eminences of the embryonic brain. This data contains insights into gene networks important for the development of medial ganglionic eminence derived interneurons. Overall design: Forebrain total RNA profiles of 15-day old Lhx6 heterozygote (Het) and Lhx6 null mice were generated by deep sequencing, using Illumina GAIIx. Mutant allele used was Lhx6tm2Vpa (MGI:3702518). Each individual sample was comprised of two animals. Four samples for Lhx6 Het and three samples for Lhx6 null mice were generated and analysed in parallel.
Modulation of Apoptosis Controls Inhibitory Interneuron Number in the Cortex.
Cell line, Subject
View SamplesSustained caloric restriction (CR) extends lifespan in animal models but the mechanism and primary tissue target(s) have not been identified. Gene expression changes with aging and CR were examined in both heart and subcutaneous white adipose tissue (WAT) of F344 male rats using Affymetrix RAE 230 arrays and validated by qRT-PCR on 18 genes. In heart, age- associated changes but not CR-associated changes in old. In WAT, genes were identified where the aging change is suppressed by CR (candidate markers of healthy aging) and those affected by CR but not normal aging (candidate longevity assurance genes). 10-21% of age-associated genes were regulated in common between tissues. Gene set enrichment analysis (GSEA) revealed coordinate small magnitude changes in ribosomal, proteasomal, and mitochondrial genes with similarities between heart and WAT. Further analysis revealed PPARgamma as a potential upstream regulator of altered gene expression in old CR WAT. These results demonstrate a reduced mRNA response to CR with age in heart relative to WAT. In WAT, we identified candidate CR mimetic targets and candidate markers of healthy aging. These data suggest a role for subcutaneous WAT in the effects of CR and strengthen the role for PPAR signaling in aging and CR while indicating that the effects of CR in heart can occur independent of global changes in mRNA level.
Transcriptional response to aging and caloric restriction in heart and adipose tissue.
No sample metadata fields
View SamplesDifferentiation of epithelial cells is strongly affected by transcription factors related to epithelial to mesenchymal-like progression.
Zeb1 affects epithelial cell adhesion by diverting glycosphingolipid metabolism.
Specimen part, Cell line
View SamplesRegeneration requires cells to regulate proliferation and patterning according to their spatial position. Positional memory is a property that enables regenerating cells to recall spatial information from the uninjured tissue. Positional memory is hypothesized to rely on gradients of molecules, few of which have been identified. Here, we quantified the global abundance of transcripts, proteins and metabolites along the proximodistal axis of caudal fins of uninjured and regenerating adult zebrafish. Using this approach, we uncovered complex overlapping expression patterns for hundreds of molecules involved in diverse cellular functions, including developmental and bioelectric signaling as well as amino acid and lipid metabolism. Moreover, 32 genes differentially expressed at the RNA level had concomitant differential expression of the encoded proteins. Thus, the identification of proximodistal differences in levels of RNAs, proteins, and metabolites will facilitate future functional studies of positional memory during appendage regeneration. Overall design: RNA-seq was performed on 5 biological replicates for each of 3 positions along the proximodistal axis of the caudal fin; proximal, middle and distal (15 total samples). Each biological replicate was a pool of fin regions cut from 2 male and 2 female zebrafish.
Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish.
No sample metadata fields
View SamplesTamoxifen-induced deletion of endogenous GlcCer-synthesizing enzyme UDP-glucose:ceramide glucosyltransferase (UGCG) in keratin K14-positive cells results in epidermal GlcCer depletion. We used microarrays to investigate the molecular consequences of Ugcg-depleted mouse epidermis.
Differentiation of epidermal keratinocytes is dependent on glucosylceramide:ceramide processing.
Specimen part
View SamplesmRNA regulation by the circadian protein Nocturnin in A549 cells. Overall design: Total RNA from WT and NOCT KO A549 cells were subject to poly-A pulldown and RNA-seq.
The metabolites NADP<sup>+</sup> and NADPH are the targets of the circadian protein Nocturnin (Curled).
Cell line, Subject
View SamplesAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive weakness from loss of motor neurons. The fundamental pathogenic mechanisms are unknown and recent evidence is implicating a significant role for abnormal exon splicing and RNA processing. Using new comprehensive genomic technologies, we studied exon splicing directly in 12 sporadic ALS and 10 control lumbar spinal cords acquired by a rapid autopsy system that processed nervous systems specifically for genomic studies. ALS patients had rostral onset and caudally advancing disease and abundant residual motor neurons in this region. We created two RNA pools, one from motor neurons collected by laser capture microdissection and one from the surrounding anterior horns. From each, we isolated RNA, amplified mRNA, profiled whole-genome exon splicing, and applied advanced bioinformatics. We employed rigorous quality control measures at all steps and validated findings by qPCR. In the motor neuron enriched mRNA pool, we found two distinct cohorts of mRNA signals, most of which were up-regulated: 148 differentially expressed genes (p103) and 411 aberrantly spliced genes (p105). The aberrantly spliced genes were highly enriched in cell adhesion (p1057), especially cell-matrix as opposed to cell-cell adhesion. Most of the enriching genes encode transmembrane or secreted as opposed to nuclear or cytoplasmic proteins. The differentially expressed genes were not biologically enriched. In the anterior horn enriched mRNA pool, we could not clearly identify mRNA signals or biological enrichment. These findings, perturbed and up-regulated cell-matrix adhesion, suggest possible mechanisms for the contiguously progressive nature of motor neuron degeneration.
Sporadic ALS has compartment-specific aberrant exon splicing and altered cell-matrix adhesion biology.
Sex, Age, Specimen part
View SamplesRNA from wt and SIN1 knock-out MEF cell lines were compared
mTORC2 Responds to Glutamine Catabolite Levels to Modulate the Hexosamine Biosynthesis Enzyme GFAT1.
Specimen part
View Samples