This SuperSeries is composed of the SubSeries listed below.
MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation.
Specimen part, Cell line, Treatment, Time
View SamplesOver-expression of miR-155 induces changes in the pattern of gene expression of hCMEC/D3 cells. hypothesis tested in the present study was that miR-155 constitute an important regulatory control of the brain endothelial response to inflammatory cytokines.
MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation.
Specimen part, Cell line, Treatment
View SamplesExpression data were generated on 136 subjects from the COPDGene study using Affymetrix microarrays. Multiple linear regression with adjustment for covariates (gender, age, body mass index, family history, smoking status, pack years) was used to identify candidate genes and Ingenuity Pathway Analysis was used to identify candidate pathways.
Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease.
Sex, Specimen part
View SamplesInduced pluripotent stem cells (iPSCs) offer opportunity for insight into the genetic requirements of the X chromosome for somatic and germline development. Turner syndrome is caused by complete or partial loss of the second sex chromosome; while more than 90% of Turner cases result in spontaneous fetal loss, survivors display an array of somatic and germline clinical characteristics. Here, we derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We analyzed gene expression profiles of derived iPSCs and in vitro differentiated cells by single cell qRT-PCR and RNA-seq. We whoed that two X chromosomes are not necessary for reprogramming or pluripotency maintenance. Genes that escape X chromosome inactivation (XCI) between control iPSCs and those with X chromosome aneuploidies revealed minimal expression differences relative to a female hESC line. Moreover, when we induced germ cell differentiation via murine xenotransplantation of iPSC lines into the seminiferous tubules of busulfan-treated mice, we observed that undifferentiated iPSCs, independent of X chromosome composition, when placed within the correct somatic environment, are capable of forming early germ cells in vivo. Results indicate that two intact X chromosomes are not required for germ cell formation; however, clinical data suggest that two sex chromosomes are required for maintenance of human germ cells. Overall design: RNA-seq of H9 cells, iPSCs from Turner syndrome and control individuals and in vitro differentiated cells
Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies.
No sample metadata fields
View SamplesSelf-renewal and pluripotency in human embryonic stem cells (hESCs) depends upon the function of a remarkably small number of master transcription factors (TFs) that include OCT4, SOX2, and NANOG. Endogenous factors that regulate and maintain the expression of master TFs in hESCs remain largely unknown and/or uncharacterized. We use a genome-wide, proteomics approach to identify proteins associated with the OCT4 enhancer. We identify known OCT4 regulators, plus a subset of potential regulators including a zinc finger protein, ZNF207, that plays diverse roles during development. In hESCs, ZNF207 partners with master pluripotency TFs to govern self-renewal and pluripotency while simultaneously controlling commitment of cells towards ectoderm through direct regulation of neuronal TFs, including OTX2. The distinct roles of ZNF207 during differentiation occur via isoform switching. Thus, a distinct isoform of ZNF207 functions in hESCs at the nexus that balances pluripotency and differentiation to ectoderm. Overall design: examine gene expression changes in ZNF207 knock down hESCs
A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells.
Specimen part, Subject
View SamplesIn acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA)
Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia: triggering the differentiation syndrome.
Specimen part
View SamplesMedium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency under these conditions, we compared hepatic carbohydrate metabolism in vivo in wild-type and MCAD-/- mice during fasting and during a lipopolysaccharide (LPS)-induced acute phase response (APR). MCAD-/- mice did not become more hypoglycemic on fasting or during the APR than wild-type mice did. Nevertheless, microarray analyses revealed increased hepatic peroxisome proliferator-activated receptor gamma coactivator-1a (Pgc-1a) and decreased peroxisome proliferator-activated receptor alpha (Ppar a) and pyruvate dehydrogenase kinase 4 (Pdk4) expression in MCAD-/- mice in both conditions,suggesting altered control of hepatic glucose metabolism. Quantitative flux measurements revealed that the de novo synthesis of glucose-6-phosphate (G6P) was not affected on fasting in MCAD-/- mice. During the APR, however, this flux was significantly decreased (-20%) in MCAD-/- mice compared with wild-type mice. Remarkably, newly formed G6P was preferentially directed toward glycogen in MCAD-/- mice under both conditions. Together with diminished de novo synthesis of G6P, this led to a decreased hepatic glucose output during the APR in MCAD-/- mice; de novo synthesis of G6P and hepatic glucose output were maintained in wild-type mice under both conditions. APR-associated hypoglycemia, which was observed in wild-type mice as well as MCAD-/- mice, was mainly due to enhanced peripheral glucose uptake. Conclusion: Our data demonstrate that MCAD deficiency in mice leads to specific changes in hepatic carbohydrate management on exposure to metabolic stress. This deficiency, however, does not lead to reduced de novo synthesis of G6P during fasting alone, which may be due to the existence of compensatory mechanisms or limited rate control of MCAD in murine mitochondrial fatty acid oxidation.
Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice.
Sex, Specimen part, Treatment
View SamplesGene regulation at the maternal-embryonic transition in the pre-implantation mouse embryo is not well understood. We knock down Ccna2 to establish proof-of-concept that antisense morpholino oligonucleotides can be used to target specific genes. We applied this strategy to study Oct4 and discovered that Oct4 is required prior to blastocyst development. Specifically, gene expression is altered as early as the 2-cell stage in Oct4-knockdown embryos.
A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition.
No sample metadata fields
View SamplesLarge numbers of ribonucleotides are incorporated into the eukaryotic nuclear genome during S-phase due to imperfect discrimination against ribonucleoside triphosphates by the replicative DNA polymerases. Ribonucleotides, by far the most common DNA lesion in replicating cells, destabilize the DNA, and an evolutionarily conserved DNA repair machinery, ribonucleotide excision repair (RER), ensures ribonucleotide removal. Complete lack of RER is embryonically lethal. Partial loss-of-function mutations in the genes encoding subunits of RNase H2, the enzyme essential for initiation of RER, cause the SLE-related type I interferonopathy Aicardi-Goutières syndrome. Here we establish that selective inactivation of RER in mouse epidermis results in spontaneous DNA damage, epidermal hyperproliferation associated with loss of hair follicle stem cells and hair follicle function. The animals develop keratinocyte intraepithelial neoplasia and invasive squamous cell carcinoma with complete penetrance, despite potent type I interferon production and skin inflammation. Compromised RER-mediated genome maintenance might represent an important tumor-promoting principle in human cancer. Overall design: CD45+ CD49f- cells were were isolated from skin cell suspensions by FACS. Total RNA was isolated using the RNeasy Micro Kit+ (Qiagen). mRNA libraries were prepared using a SMART protocol and subjected to deep sequencing on an Illumina®HiSeq 2500.
Ribonucleotide Excision Repair Is Essential to Prevent Squamous Cell Carcinoma of the Skin.
Specimen part, Subject
View SamplesLarge numbers of ribonucleotides are incorporated into the eukaryotic nuclear genome during S-phase due to imperfect discrimination against ribonucleoside triphosphates by the replicative DNA polymerases. Ribonucleotides, by far the most common DNA lesion in replicating cells, destabilize the DNA, and an evolutionarily conserved DNA repair machinery, ribonucleotide excision repair (RER), ensures ribonucleotide removal. Complete lack of RER is embryonically lethal. Partial loss-of-function mutations in the genes encoding subunits of RNase H2, the enzyme essential for initiation of RER, cause the SLE-related type I interferonopathy Aicardi-Goutières syndrome. Here we establish that selective inactivation of RER in mouse epidermis results in spontaneous DNA damage, epidermal hyperproliferation associated with loss of hair follicle stem cells and hair follicle function. The animals develop keratinocyte intraepithelial neoplasia and invasive squamous cell carcinoma with complete penetrance, despite potent type I interferon production and skin inflammation. Compromised RER-mediated genome maintenance might represent an important tumor-promoting principle in human cancer. Overall design: Keratinocytes (CD49f+) cells were isolated from skin cell suspensions by FACS. Total RNA was isolated using the RNeasy Mini Kit+ (Qiagen). mRNA libraries were prepared and subjected to deep sequencing on an Illumina®HiSeq.
Ribonucleotide Excision Repair Is Essential to Prevent Squamous Cell Carcinoma of the Skin.
Specimen part, Subject
View Samples