Mycobacterium avium infection in mice induces granuloma necrosis in the lung which is dependent on IFNg. IRF1 is a transcription factor activated by IFNg signaling. The effect of IFNg and IRF1 on immunopathology and transcriptional changes in the lung were analysed using gene-deficient mice.
Mycobacteria-induced granuloma necrosis depends on IRF-1.
No sample metadata fields
View SamplesIn this study, we investigate the anti-aging response induced by dietary restriction (DR) on gene expression level. For this, we carried out Ribosomal RNA depleted Total RNA sequencing in 16 weeks old Ercc1?/- ad libidum (AL), DR and wt mice. Overall design: Total RNA was extracted from fresh liver samples from 16 weeks old Ercc1?/- AL, DR and wt mice. Ribosomal RNA was depleted from the extracts by using RiboMinus kit (Ambion) then sequenced according to the Illumina TruSeq v3 protocol on HiSeq2000 platform.
Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.
Age, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.
Sex, Age, Specimen part
View SamplesNeurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells; however, the intracellular mechanisms for this tumor-promoting effect are less clear. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells (LCLs) from NF1-affected and unaffected individuals.
Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.
Sex, Age, Specimen part
View SamplesNeurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells; however, the intracellular mechanisms for this tumor-promoting effect are less clear. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells from NF1-affected and unaffected individuals. As a cross-species filter for heterogeneity, we compared the results from two human kindreds to whole-genome transcriptional profiling in spleen-derived B-cells from age- and gender-matched Nf1+/- and wild-type mice.
Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.
Sex, Age, Specimen part
View SamplesNeurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells; however, the intracellular mechanisms for this tumor-promoting effect are less clear. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells (LCLs) from NF1-affected and unaffected individuals.
Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.
Sex, Age, Specimen part
View SamplesDuring HIV-1 infection, there is a massive perturbation of host gene expression, but as yet, genome-wide studies have not identified host genes affecting HIV-1 replication in lymphatic tissue, the primary site of virus-host interactions. In this study, we isolated RNA from the inguinal lymph nodes of 22 HIV-1-infected individuals and utilized a microarray approach to identify host genes critically important for viral replication in lymphatic tissue by examining gene expression associated with viral load. Strikingly, ~95% of the transcripts (558) in this data set (592 transcripts total) were negatively associated with HIV-1 replication. Genes in this subset (1) inhibit cellular activation/proliferation (ex.: TCFL5, SOCS5 and SCOS7, KLF10), (2) promote heterochromatin formation (ex.: HIC2, CREBZF, ZNF148/ZBP-89), (3) increase collagen synthesis (ex.: PLOD2, POSTN, CRTAP), and (4) reduce cellular transcription and translation. Potential anti-HIV-1 restriction factors were also identified (ex.: NR3C1, HNRNPU, PACT). Only ~5% of the transcripts (34) were positively associated with HIV-1 replication. Paradoxically, nearly all these genes function in innate and adaptive immunity, particularly highlighting a heightened interferon system. The predominance of negative correlations as well as the disconnect between host defenses and viral load point to the importance of genes that regulate target cell activation and genes that code for potentially new restriction factors as determinants of viral load rather than conventional host defenses.
Host genes associated with HIV-1 replication in lymphatic tissue.
Sex, Age, Specimen part, Race
View SamplesNADPH-cytochrome P450 reductase (CPR) is important for the functions of many enzymes, such as microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. Two mouse models with deficient CPR expression in adults were recently generated in this laboratory: liver-Cpr-null (with liver-specific Cpr deletion) (Gu et al., J. Biol. Chem., 278, 2589525901, 2003) and Cpr-low (with reduced CPR expression in all organs examined) (Wu et al. J. Pharmacol. Expt. Ther. 312, 35-43, 2005). The phenotypes included a reduced serum cholesterol level and an induction of hepatic P450 in both models, and hepatomegaly and fatty liver in the liver-Cpr-null mouse alone. Our aim was to identify hepatic gene-expression changes related to these phenotypes. Cpr-lox mice, which have normal CPR expression (Wu et al., Genesis, 36, 177-181, 2003.), were used as the control in microarray analysis. A detailed analysis of the gene-expression changes in lipid metabolism and transport pathways revealed potential mechanisms, such as an increased activation of constitutive androstane receptor (CAR) and a decreased activation of peroxisomal proliferators activated receptor alpha (PPAR-gamma) by precursors of cholesterol biosynthesis, that underlie common changes (e.g., induction of multiple P450s and inhibition of genes for fatty acids metabolism) in response to CPR-loss in the two mouse models. Moreover, we also uncovered model-specific gene-expression changes, such as the induction of a lipid translocase (CD36 antigen) and the suppression of carnitine O-palmitoyltransferase 1 (CPT1a) and acyl-CoA synthetase long-chain family member 1 (Acsl1), that are potentially responsible for the severe hepatic lipidosis observed in liver-Cpr-null, but not Cpr-low mice.
Hepatic gene expression changes in mouse models with liver-specific deletion or global suppression of the NADPH-cytochrome P450 reductase gene. Mechanistic implications for the regulation of microsomal cytochrome P450 and the fatty liver phenotype.
No sample metadata fields
View SamplesExpression data were generated on 136 subjects from the COPDGene study using Affymetrix microarrays. Multiple linear regression with adjustment for covariates (gender, age, body mass index, family history, smoking status, pack years) was used to identify candidate genes and Ingenuity Pathway Analysis was used to identify candidate pathways.
Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease.
Sex, Specimen part
View SamplesThe purpose of the dataset is to analyze expression of genes induced by KRAS and regulated by TBK1
Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.
Specimen part
View Samples