Therapeutic hypothermia is a clinically effective treatment for various hypoxic and ischemic conditions, but the associated molecular mechanisms remain unclear. To gain insight into hypothermia-induced transcriptional response, mouse embryonic fibroblasts were exposed to mild hypothermia (32C) or normothermia (37C) for increasing time periods. We aimed to identify genes with temporally near-monotonic response as the most obvious candidates for mediating the therapeutic effects of hypothermia.
Estimating differential expression from multiple indicators.
Specimen part, Time
View SamplesEndogenous oligodendrocyte progenitor cells (OPCs) are a promising target to improve functional recovery after spinal cord injury (SCI) by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neuron. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs). Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. Overall design: DEG analysis of primary OPC and OL populations, 5 biological replicates per population
Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation <i>In Vitro</i>.
No sample metadata fields
View SamplesComparison between cell lines from 9 different cancer tissue of origin types (Breast, Central Nervous System, Colon, Leukemia, Melanoma, Non-Small Cell Lung, Ovarian, Prostate, Renal) from NCI-60 panel
Multifactorial regulation of E-cadherin expression: an integrative study.
Sex, Age, Specimen part, Disease, Disease stage, Cell line, Time
View SamplesThe Wnt/alpha-catenin pathway plays a central role in epidermal homeostasis and regeneration but how it affects fibroblast fate decisions is unknown. Here, we investigated the effect of targeted alpha-catenin stabilization in dermal fibroblasts. Comparative gene expression profiling of Sca1- and Sca1+ neonatal fibroblasts, from upper and lower dermis respectively, confirmed that Sca1+ cells had a pre-adipocyte signature and revealed differential expression of Wnt/alphacatenin-associated genes. By targeting all fibroblasts or selectively targeting Dlk1+ lower dermal fibroblasts, we found that -catenin stabilization between E16.5 and P2 resulted in a reduction in the dermal adipocyte layer with a corresponding increase in dermal fibrosis and an altered hair cycle. The fibrotic phenotype correlated with a reduction in the potential of Sca1+ fibroblasts to undergo adipogenic differentiation ex vivo. Our findings indicate that Wnt/alpha-catenin signaling controls adipogenic cell fate within the lower dermis, which potentially contributes to the pathogenesis of fibrotic skin diseases.
β-Catenin Stabilization in Skin Fibroblasts Causes Fibrotic Lesions by Preventing Adipocyte Differentiation of the Reticular Dermis.
Specimen part
View SamplesThe goal of this study was to identify transcriptional differences between varying combinations of Tet deletion clones following six days of LIF withdrawal. These libraries were generated from cells under normal culture conditions. Overall design: RNA-seq libraries were generated for 3 WT, 3 Tet1-/-, 2 Tet2-/-, DKO, and TKO clones. Sequencing was done on a Illumina NextSeq 500 for all paired end reads
Deletion of Tet proteins results in quantitative disparities during ESC differentiation partially attributable to alterations in gene expression.
Cell line, Subject, Time
View SamplesTumor epithelium and surrounding stromal cells were isolated using laser capture microdissection of human breast cancer to examine differences in gene expression based on tissue types from inflammatory and non-inflammatory breast cancer
A stromal gene signature associated with inflammatory breast cancer.
Specimen part, Disease, Race, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The SIN3A/HDAC Corepressor Complex Functionally Cooperates with NANOG to Promote Pluripotency.
Specimen part
View SamplesDespite the requirement of Sin3a for survival of early embryos and embryonic stem cells (ESCs), mechanistic action of Sin3a in the maintenance and establishment of pluripotency remains unexplored. Here we report the transcriptional regulatory roles of Sin3a in maintaining ESC pluripotency and in reprogramming somatic cells towards full pluripotency. Sin3a/HDAC complex members were enriched in an extended Nanog interactome and exhibited a predominant transcriptional co-activator role at a global level in ESCs. We also established a critical role for Sin3a in efficient reprogramming of somatic cells towards full pluripotency. Nanog and Sin3a co-localize at almost all of their genome-wide targets in pre-iPSCs, and both factors are required to directly induce a synergistic transcriptional program wherein pluripotency genes are activated and reprogramming barrier genes are repressed. Our results, for the first time, establish positive roles of the Sin3a/HDAC complex in the maintenance and establishment of pluripotency.
The SIN3A/HDAC Corepressor Complex Functionally Cooperates with NANOG to Promote Pluripotency.
No sample metadata fields
View SamplesComparison between cell lines from 9 different cancer tissue of origin types (Breast, Central Nervous System, Colon, Leukemia, Melanoma, Non-Small Cell Lung, Ovarian, Prostate, Renal) from NCI-60 panel
Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The cohesin-associated protein Wapal is required for proper Polycomb-mediated gene silencing.
Specimen part
View Samples