refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 250 results
Sort by

Filters

Technology

Platform

accession-icon GSE26390
Fibroblast-specific focal adhesion kinase links mechanical force to fibrosis via chemokine-mediated inflammatory pathways
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Hypertrophic scar (HTS) formation is characterized by exuberant fibroproliferation for reasons that remain poorly understood1. One important but often overlooked component of wound repair is mechanical force, which regulates reciprocal cell-matrix interactions through focal adhesion components including focal adhesion kinase (FAK)1,2. Here we report that FAK is activated following cutaneous injury and that this activation is potentiated by mechanical loading. Transgenic mice lacking fibroblast-specific FAK exhibit significantly less fibrosis in a preclinical model of HTS formation. Inflammatory pathways involving monocyte chemoattractant protein-1 (MCP-1), a chemokine highly implicated in human skin fibrosis3, are triggered following FAK activation, mechanistically linking physical force to fibrosis. Further, small molecule inhibition of FAK effectively abrogates fibroproliferative mechanisms in human cells and significantly reduces scar formation in vivo. Collectively, these findings establish a molecular basis for HTS formation based on the mechanical activation of fibroblast-specific FAK and demonstrate the therapeutic potential of targeted mechanomodulatory strategies.

Publication Title

Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE5116
Genomic Pathways of 17-beta-Estradiol Induced Malignant Cell Transformation in Human Breast Epithelial Cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The estrogen-dependence of breast cancer has long been recognized, however, the role of 17-estradiol (E2) in cancer initiation was not known until we demonstrated that it induces complete neoplastic transformation of the human breast epithelial cells MCF-10F. E2-treatment of MCF-10F cells progressively induced high colony efficiency and loss of ductulogenesis in early transformed (trMCF) cells and invasiveness in Matrigel invasion chambers. The cells that

Publication Title

Epithelial to mesenchymal transition in human breast epithelial cells transformed by 17beta-estradiol.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19620
Chronic hyperglycemia impairs metabolic switching of human myotubes
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Skeletal muscle of insulin resistant individuals is characterized by lower fasting lipid oxidation and reduced ability to switch between lipid and glucose oxidation. The purpose of the present study was to examine if impaired metabolic switching could be induced by chronic hyperglycemia. Human myotubes were treated with or without chronic hyperglycemia (HG) (20 mmol/l glucose for 4 days), and the metabolism of [14C]oleic acid (OA) and [14C]glucose was studied. Acute glucose (5mmol/l) suppressed OA oxidation by 50% in normoglycemic (NG) (5.5 mmol/l glucose) cells. Myotubes exposed to chronic hyperglycemia showed a significantly reduced OA uptake and oxidation to CO2, whereas acid-soluble metabolites were increased. Glucose suppressibility, the ability of acute glucose to suppress lipid oxidation, was significantly reduced to 21%, while adaptability, the capacity to increase lipid oxidation with increasing fatty acid availability, was unaffected. Glucose uptake and oxidation was significantly reduced by about 40%. Substrate oxidation in presence of mitochondrial uncouplers showed that net and maximal oxidative capacities were significantly reduced after hyperglycemia, and the concentration of ATP was reduced by 25%. However, none of the measured mitochondrial genes were downregulated nor was mitochondrial content. Microarray showed that no genes were significantly regulated by chronic hyperglycemia. Addition of chronic lactate reduced both glucose and OA oxidation to the same extent as hyperglycemia, and this effect was specific for lactate. In conclusions, chronic hyperglycemia reduced substrate oxidation in skeletal muscle cells and impaired the metabolic switching. The effect is most likely due to an induced mitochondrial dysfunction.

Publication Title

Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31553
Effects of benfotiamine in cultured human myotubes exposed to both normal and high glucose cencentrations
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) upon glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions.

Publication Title

Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE40789
PPAR activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The role of peroxisome proliferator-activated receptor (PPAR) activation on global gene expression and mitochondrial fuel utilization were investigated in human myotubes. Only 21 genes were up-regulated and 3 genes were down-regulated after activation by the PPAR agonist GW501516. Pathway analysis showed up-regulated mitochondrial fatty acid oxidation, TCA cycle and cholesterol biosynthesis. GW501516 increased oleic acid oxidation and mitochondrial oxidative capacity by 2-fold. Glucose uptake and oxidation were reduced, but total substrate oxidation was not affected, indicating a fuel switch from glucose to fatty acid. Cholesterol biosynthesis was increased, but lipid biosynthesis and mitochondrial content were not affected. This study confirmed that the principal effect of PPAR activation was to increase mitochondrial fatty acid oxidative capacity. Our results further suggest that PPAR activation reduced glucose utilization through a switch in mitochondrial substrate preference by up-regulating pyruvate dehydrogenase kinase isozyme 4 and genes involved in lipid metabolism and fatty acid oxidation.

Publication Title

PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE26334
Expression data from LoVo colon cancer lines +/- constitutive LIN28B expression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We sought to elucidate the molecular mechanisms whereby LIN28B functions by comparing the gene expression profile of cells constitutively expressing LIN28B to empty vector controls.

Publication Title

LIN28B promotes colon cancer progression and metastasis.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE26457
Defining the Genomic Signature of the Parous Breast
  • organism-icon Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

It is widely accepted that a womans lifetime risk of developing breast cancer at menopause is reduced by early full term pregnancy and multiparity. This phenomenon is associated with the development and differentiation of the breast, which ultimately imprints a specific genomic profile in the mammary epithelium. In the present work we demonstrate that this profile represents a permanent signature that could be associated with the breast cancer risk reduction conferred by pregnancy.

Publication Title

Defining the genomic signature of the parous breast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13083
Barrett's vs Normal esophagus vs small intestine comparison
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To begin to identify genes involved in the transdifferentiation process we analyzed Barretts esophagus (with no dysplasia), normal esophagus and small intestine biopsy samples by Affymetrix microarray.

Publication Title

Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett's esophagus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41010
Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and exon sequences
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE41003
Expression data from HeLa cells after MBD2 and MBD3 knock down
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The heterogeneous collection of NuRD complexes can be grouped into the MBD2 or MBD3 containing complexes MBD2-NuRD and MBD3-NuRD. MBD2 is known to bind to methylated CpG sequences in vitro in contrast to MBD3. Although functional differences have been described, a direct comparison of MBD2 and MBD3 in respect to genome-wide binding and function has been lacking. Here we show when depleting cells for MBD2, the MBD2 bound genes increase their activity, whereas MBD2 plus MBD3 bound genes reduce their activity. Most strikingly, MBD3 is enriched at active promoters, whereas MBD2 is bound at methylated promoters and enriched at exon sequences of active genes. This suggests a functional connection between MBD2 binding to chromatin and splicing.

Publication Title

Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact