We compared transcriptional profiles of CD4+ and CD8+ T lymphocytes from HIV infected individuals before and 1 year after interruption of antiretroviral therapy (ART).
Effect of analytical treatment interruption and reinitiation of antiretroviral therapy on HIV reservoirs and immunologic parameters in infected individuals.
Sex, Age, Specimen part, Disease stage, Race, Subject
View SamplesThis study assessed the transcriptional profile of SiHa cells. SiHa is a cervical cancer cell line with integrated HPV16, and was used as a model to study human gene expression in the context of integrated virus. Gene expression in SiHa, calculated by Cufflinks, was scored in windows around the locations of known viral integrations in patients or cell lines to determine if there was an association between gene expression and viral integration. We found that SiHa gene expression was higher near loci of integration for HPV18 vs. HPV16, cervical tissues vs. head and neck cancers, and cervical cancers vs. in vitro integrations. This study provides insight into the factors that may influence where viruses integrate in the human genome. Overall design: Gene Expression in untreated SiHa cells.
Meta-Analysis of DNA Tumor-Viral Integration Site Selection Indicates a Role for Repeats, Gene Expression and Epigenetics.
No sample metadata fields
View SamplesDuring embryogenesis, cell specification and tissue formation is directed by the concentration and temporal presentation of morphogens, and similarly, pluripotent embryonic stem cells differentiate in vitro into various phenotypes in response to morphogen treatment. Embryonic stem cells are commonly differentiated as three dimensional spheroids called embryoid bodies (EBs); however, differentiation within EBs is typically heterogeneous and disordered. Here we show that spatiotemporal control of microenvironmental cues embedded directly within EBs enhances the homogeneity, synchrony and organization of differentiation. Degradable polymer microspheres releasing retinoic acid within EBs induce the formation of cystic spheroids closely resembling the early streak mouse embryo, with an exterior of visceral endoderm enveloping an epiblast layer. These results demonstrate that controlled morphogen presentation to stem cells more efficiently directs cell differentiation and tissue formation, thereby improving developmental biology models and enabling the development of regenerative medicine therapies and cell diagnostics.
Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules.
No sample metadata fields
View SamplesThe glucocorticoid receptor overexpression in early life is sufficient to alter gene expression patterns for the rest of the animal's life.
Early-life forebrain glucocorticoid receptor overexpression increases anxiety behavior and cocaine sensitization.
Sex, Specimen part
View SamplesThe experiments were performed to understand the molecular basis of plant growth promotion in rice by Rhodotorula mucilaginosa JGTA-S1, an endophytic yeast from Typha angustifolia
Early changes in shoot transcriptome of rice in response to Rhodotorula mucilaginosa JGTA-S1.
Specimen part, Treatment, Time
View SamplesHuman neural stem and progenitor cells transformed with c-MYC, dominant-negative p53, constitutively active AKT and hTERT formed tumors in mice that recapitulated Group 3 medulloblastoma in terms of pathology and expression profile
DiSCoVERing Innovative Therapies for Rare Tumors: Combining Genetically Accurate Disease Models with In Silico Analysis to Identify Novel Therapeutic Targets.
Specimen part
View SamplesAcrylamide is a type-2 alkene monomer with established human neurotoxic effects. While the primary source of human exposure to acrylamide is occupational, other exposure sources include food, drinking water, and smoking. In this study, neurobehavioral assays coupled with transcriptional profiling analysis were conducted to assess both behavioral and gene expression effects induced by acrylamide neurotoxicity in rats when administered during early postnatal life. Acrylamide administration in rat pups induced significant characteristic neurotoxic symptoms including increased heel splay, decrease in grip strength, and decrease in locomotor activity. Transcriptome analysis with the Affymetrix Rat Genome 230 2.0 array indicated that acrylamide treatment caused a significant alteration in the expression of genes involved in muscle contraction, pain regulation, and dopaminergic neuronal pathways. First, in agreement with the observed behavioral effects, expression of the Mylpf gene involved in muscle contraction was downregulated in the spinal cord in response to acrylamide. Second, in sciatic nerves, acrylamide repressed the expression of the opioid receptor gene Oprk1 that is known to play a role in neuropathic pain regulation. Finally, in the cerebellum, acrylamide treatment caused a decrease in the expression of the nuclear receptor gene Nr4a2 that is required for development of dopaminergic neurons. Thus, our work examining the effect of acrylamide at the whole-genome level on a developmental mammalian model has identified novel genes previously not implicated in acrylamide neurotoxicity that can be further developed into biomarkers for assessing the risk of acrylamide exposure.
Neurobehavioral and transcriptional effects of acrylamide in juvenile rats.
Sex, Specimen part, Treatment
View SamplesC/EBPbeta-2 results in EMT and ErbB indpendence this project investigated the gene changes in related genes upon C/EBPbeta-2 overexpression in MCF10A cells.
Genomic profiling of C/EBPβ2 transformed mammary epithelial cells: a role for nuclear interleukin-1β.
Cell line
View SamplesThe discovery of mammalian cardiac progenitor cells has suggested that the heart consists of not only terminally differentiated beating cardiomyocytes, but also a population of self-renewing stem cells with the potential to generate new cardiomyocytes (Anderson, Self et al. 2007; Bearzi, Rota et al. 2007; Wu, Chien et al. 2008). A consequence of longevity is continual exposure to environmental and xenobiotic stresses, and recent literature suggests that hematopoietic stem cell pools tightly control cell health through upregulation of the integrated stress response and consequent cellular mechanisms such as apoptosis. However, whether or not this biological response is conserved in progenitor cells for later lineages of tissue specific stem cells is not well understood. Using human induced pluripotent stem cells (iPSC) of both cardiac progenitor and mature cardiomyocyte lineages, we found that the integrated stress response was upregulated in the iPSC cardiac progenitors leading to an increased sensitivity for apoptosis relative to the mature cardiomyocytes. Of interest, C/EBP homologous protein (CHOP) signaling plays a mechanistic role in the cell death phenotype observed in iPSC progenitors, by which depletion of CHOP prevents cell death following cellular stress by thapsigargin exposure. Our studies suggest that the integrated stress response plays a unique role in maintaining iPSC cardiac progenitor cellular integrity by removing unhealthy cells via apoptosis following environmental and xenobiotic stresses, thus preventing differentiation and self-renewal of damaged cells.
The Integrated Stress Response Regulates Cell Health of Cardiac Progenitors.
Specimen part, Treatment
View SamplesPseudoautosomal regions (PAR1 and PAR2) in eutherians retain homologous regions between the X and Y chromosomes that play a critical role in the obligatory X-Y crossover during male meiosis. Genes that reside in the PAR1 are exceptional in that they are rich in repetitive sequences and undergo a very high rate of recombination. Remarkably, murine PAR1 homologs have translocated to various autosomes, reflecting the complex recombination history during the evolution of the mammalian X chromosome. We now report that the SNF2-type chromatin remodeling protein ATRX controls the expression of eutherians ancestral PAR1 genes that have translocated to autosomes in the mouse. In addition, we have identified two potentially novel mouse PAR1 orthologs. We propose that the ancestral PAR1 genes share a common epigenetic environment that allows ATRX to control their expression.
The SWI/SNF protein ATRX co-regulates pseudoautosomal genes that have translocated to autosomes in the mouse genome.
Sex
View Samples