Pyrazinamide (PZA) is one of the first line antibiotics used for the treatment of tuberculosis (TB). we have used human monocyte and a mouse model of pulmonary TB to investigate whether treatment with PZA, in addition to its known anti-mycobacterial properties, modulate the host immune response during Mycobacterium tuberculosis (Mtb) infection.
Host targeted activity of pyrazinamide in Mycobacterium tuberculosis infection.
Specimen part, Treatment, Time
View SamplesInterferon (IFN) is a unique type I IFN that is not induced by pattern-recognition response elements. IFN is constitutively expressed in mucosal tissues including the female genital mucosa. We show here that IFN induces an antiviral state in human macrophages that blocks HIV-1 replication.
IFN-<b>ε</b> protects primary macrophages against HIV infection.
Specimen part, Treatment, Time
View SamplesGlobal gene expressions of Mtb-infected mouse lungs were compared between with and without PDE4 inhibitor treatment. A lot of host genes are differentially expressed 21d and 28d post-Mtb infection. PDE4 inhibitor, however, downregulate 10% of genes among those and genes differentially regulated by PDE4 inhibitor are mainly involved immune response.
Phosphodiesterase 4 inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice.
Specimen part, Disease, Disease stage
View SamplesEwing Sarcoma is caused by a pathognomonic genomic translocation that places an N-terminal EWSR1 gene in approximation with one of several ETS genes (typically FLI1). This aberration, in turn, alters the transcriptional regulation of more than five hundred genes and perturbs a number of critical pathways that promote oncogenesis, cell growth, invasion, and metastasis. Among them, translocation-mediated up-regulation of the insulin-like growth factor receptor 1 (IGF-1R) and mammalian target of rapamycin (mTOR) are of particular importance since they work in concert to facilitate IGF-1R expression and ligand-induced activation, respectively, of proven importance in ES transformation. When used as a single agent in Ewing sarcoma therapy, IGF-1R or mTOR inhibition leads to rapid counter-regulatory effects that blunt the intended therapeutic purpose. Therefore, identify new mechanisms of resistance that are used by Ewing sarcoma to evade cell death to single-agent IGF-1R or mTOR inhibition might suggest a number of therapeutic combinations that could improve their clinical activity.
IGF-1R and mTOR Blockade: Novel Resistance Mechanisms and Synergistic Drug Combinations for Ewing Sarcoma.
Specimen part
View SamplesIn addition to being causally linked to the formation of multiple tumor types, tobacco use has been associated with decreased anticancer treatment efficacy and reduced survival time. A detailed understanding of the cellular mechanisms that are affected by tobacco smoke should facilitate the development of improved preventive and therapeutic strategies. We have investigated the effects of a tobacco smoke (TS) extract on the transcriptome of MSK-Leuk1 cells, a cellular model of oral leukoplakia. Using Affymetrix HGU133 Plus 2 arrays, 411 differentially expressed probesets were identified. The observed transcriptome changes were grouped according to functional information, and translated into molecular interaction network maps and signaling pathways. Pathways related to cellular proliferation, inflammation, apoptosis and tissue injury appeared to be perturbed. Analysis of networks connecting the affected genes identified specific molecular interactions, hubs and key transcription regulators affected by TS. Thus TS was found to induce several EGFR ligands forming an EGFR-centered molecular interaction network, as well as several AhR-dependent genes, including the xenobiotic metabolizing enzymes CYP1A1 and CYP1B1. Notably, the latter findings in vitro are consistent with our parallel finding that levels of CYP1A1 and CYP1B1 were increased in oral mucosa of smokers. Collectively, these results offer insights into the mechanisms underlying the procarcinogenic effects of TS and raise the possibility that inhibitors of EGFR or AhR signaling will prevent or delay the development of tobacco smoke-related tumors. Moreover, the inductive effects of TS on xenobiotic metabolizing enzymes may help explain reduced efficacy of chemotherapy, and suggest targets for chemopreventive agents in smokers.
Effects of tobacco smoke on gene expression and cellular pathways in a cellular model of oral leukoplakia.
No sample metadata fields
View SamplesPurpose: The goal of this study is to determine whether ectopic expression of the GLI2 transcription factor in the human pancreatic cancer cell line, YAPC is sufficient to cause gene expression changes associated with a EMT switch. Methods: RNA was isolated from YAPC cells engineered to express a doxycycline inducible cassette for ectopic expression of GLI2 following treatment with 1ug/ml of Dox for 6 days. Control YAPC cells expressing an "empty vector" dox inducible cassette were similarly treated for 6 days with 1ug/u Dox and RNA was collected. Three biologically destinct replicates were submitted for library preparation and RNA-sequencing on an Illumina hiseq 2000. The sequence reads that passed quality filters were analyzed at the transcript level using TopHat followed by Cufflinks. qRT–PCR validation was performed using SYBR Green assays Results: RNA-seq data confirmed stable over-expression of GLI2 in the YAPC-rtta-GLI2 cells and not in the EV control cells treated with Dox. Target genes of interest were validated by qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for all target genes tested. Gene set enrichment analysis of differentially expressed genes showed enrichment of EMT associated pathways which was further validated using functional assays. In addition a statistically significant alteration in SPP1 transcript was discovered in GLI2 overexpressing cells which formed the basis of ongoing experiments in the study. Conclusions: Our data support a role for GLI2 in regulation of genes associated with basal-like subtype switching including SPP1 Overall design: mRNA profiles from human pancreatic cancer cell lines YAPC-rtta-GLI2 and YAPC-rtta-EV treatment with doxycyline for 6 days were compared, in triplicate.
Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer.
No sample metadata fields
View Samples40 current smokers and 40 age- and gender- matched never smokers underwent buccal biopsies.The study had four objectives: (a) to define the effects of smoking on the transcriptome of oral epithelial cells; (b) to determine if any of the effects of tobacco smoke on the transcriptome are gender-dependent; (c) to compare the effects of tobacco smoke exposure on the transcriptome in oral v. bronchial epithelium and (d) to identify agents with the potential to suppress the effects of tobacco smoke on the transcriptome.
Effects of cigarette smoke on the human oral mucosal transcriptome.
Sex, Specimen part
View SamplesHost-influenza virus interplay at the transcript level has been extensively characterized in epithelial cells. Yet, there are no studies that simultaneously characterize human host and influenza A virus (IAV) genomes. We infected human bronchial epithelial BEAS-2B cells with two seasonal IAV/H3N2 strains, Brisbane/10/07 and Perth/16/09 (reference strains for past vaccine seasons) and the well-characterized laboratory strain Udorn/307/72. Strand-specific RNA-seq of the infected BEAS-2B cells allowed for simultaneous analysis of host and viral transcriptomes, in addition to pathogen genomes, to reveal changes in mRNA expression and alternative splicing (AS). In general, patterns of global and immune gene expression induced by the three IAVs were mostly shared. However, AS of host transcripts and small nuclear RNAs differed between the seasonal and laboratory strains. Analysis of viral transcriptomes showed deletions of the polymerase components (defective interfering (DI)-like RNAs) within the genome. Surprisingly, we found that the neuraminidase gene undergoes AS, and that the splicing event differs between seasonal and laboratory strains. Our findings reveal novel elements of the host-virus interaction and highlight the importance of RNA-seq in identifying molecular changes at the genome level that may contribute to shaping RNA-based innate immunity. Overall design: Examination of RNA from three different H3N2 viruses (and mock infection) at three timepoints with 3 biological replicates each.
Strand-Specific Dual RNA Sequencing of Bronchial Epithelial Cells Infected with Influenza A/H3N2 Viruses Reveals Splicing of Gene Segment 6 and Novel Host-Virus Interactions.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View SamplesSystems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology.
Systems biology of vaccination for seasonal influenza in humans.
Specimen part, Subject, Time
View Samples