Mice received 10 mg/L Cd in drinking water for 20 weeks, or normal water. At time of sacrifice, the lung tissue was harvested and RNA was extracted.
Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice.
Age, Specimen part
View SamplesThe Keap1/Nrf2 signaling pathway is a tractable target for the pharmacological prevention of tumorigenesis. 3H-1,2-dithiole-3-thione (D3T) and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) are representative members of two classes of Nrf2-activating chemopreventive agents. Natural dithiolethiones have been widely used in clinical trials for cancer chemoprevention. Synthetic triterpenoids, however, have been shown to be significantly more potent Nrf2 activators and are under clinical evaluation for the treatment of chronic kidney disease. This study seeks to characterize the structure-activity relationship between D3T and CDDO-Im in mouse liver tissue. To this end we treated Wt and Nrf2-null mice with 300 umol/kg bw D3T and 3, 10, and 30 umol/kg bw CDDO-Im every other day for 5 days and evaulated global gene expression changes as a product of both treamtent and genotype using Affymetrix microarray.
Pharmacogenomics of Chemically Distinct Classes of Keap1-Nrf2 Activators Identify Common and Unique Gene, Protein, and Pathway Responses In Vivo.
Sex, Age, Specimen part
View SamplesYeast transcription factor Yap1 mediates adaptive response against H2O2 and the cystein thiol reactive Michael acceptor, N-ethylmaleimid (NEM) and acrolein. The response against H2O2 was found to be distinct from that against NEM and acrolein.
Yap1 activation by H2O2 or thiol-reactive chemicals elicits distinct adaptive gene responses.
Treatment
View SamplesCombining genome-wide microarray and functional analyses, we found that EGFR activation abrogates barrier function, increasing transepidermal water loss (TEWL) and transepithelial permeability of water-soluble ions and higher molecular weight dextrans, in part by disrupting the expression of tight junction proteins. EGF decreases certain lipid matrix free fatty acids and ceramides by its actions to repress the expression of specific biosynthetic enzymes.
EGFR regulation of epidermal barrier function.
Specimen part
View SamplesTCDD increased expression of numerous differentiation specific genes and decreased expression of numerous genes involved in mitochondrial health and redox homeostasis
2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated production of reactive oxygen species is an essential step in the mechanism of action to accelerate human keratinocyte differentiation.
Specimen part, Cell line
View SamplesThe activities of the dithiolethione analogs, D3T, OLT, and TBD are pharmacologically well-understood. These compounds act as chemopreventive agents whose ability is to block or diminish early stages of carcinogenesis. In addition, the three compounds are classified as monofunctional Phase II enzyme inducers and activate the same pathway, namely the Keap1-Nrf2 signal pathway. The three dithiolethiones were showed to ameliorate the AFB1-induced toxicity through increasing phase II enzymes including glutathione S-transferase (GST). The parent D3T was observed to be the most potent chemoprotective agent. Oltipraz, a clinically approved drug, has been shown to exhibit less efficacy than its analogs for inhibition of aflatoxin-induced hepatic foci.TBD was suggested to be better than OLT as a chemopreventive agent because of its reduced toxicity profile.
Chemical genomics of cancer chemopreventive dithiolethiones.
No sample metadata fields
View SamplesS-adenosylmethionine (SAM) is the methyl donor for biological methylation modifications that regulate protein and nucleic acid functions. Here we show that methylation of a phospholipid, phosphatidylethanolamine (PE), is the major consumer of SAM in budding yeast. The induction of phospholipid biosynthetic genes is accompanied by induction of the enzyme that hydrolyzes S-adenosylhomocysteine (SAH), a product and inhibitor of methyltransferases. Beyond its function for the synthesis of phosphatidylcholine (PC), the methylation of PE facilitates the turnover of SAM for the synthesis of cysteine and glutathione. Strikingly, cells that lack PE methylation accumulate SAM, which leads to hypermethylation of histones and the major phosphatase PP2A, dependency on cysteine, and sensitivity to oxidative stress. Without PE methylation, particular sites on histones then become methyl sinks to enable the turnover of SAM. These findings reveal an unforeseen metabolic function for phospholipid and histone methylation intrinsic to the life of a cell. Overall design: Two biological replicates of wild type and cho2? cells in YPL media, in SL media after 1 hour and in SL media after 3 hour were collected for sequencing.
A Metabolic Function for Phospholipid and Histone Methylation.
Cell line, Subject, Time
View SamplesTwo azide mutagenized lines Freeze Resistance (FR, 75% survival) and Freeze Susceptible (FS, 30% survival) were compared with and without 4C 1.5 cold acclimation of crown tissue to identify genes responsible for the difference in freeze resistance.
Cbf genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and - susceptible, winter wheat mutant lines.
No sample metadata fields
View SamplesAdaptive immune responses to infection result in the formation of memory T cells that respond more rapidly and robustly to reinfections, providing the basis of the immunological memory targeted by vaccines. Underlying the enhanced responsiveness of memory cells is their ability to rapidly up-regulate the transcription of key effector genes at a higher level compared to nave cells (termed transcriptional memory). While transcriptionally permissive histone modifications are known to provide chromatin structures that facilitate transcriptional memory, the molecular mechanisms that underpin this process still remain elusive. Here we investigate the transcriptional response of the Jurkat T cell line to stimulation with PMA and Ionomycin and determine if this response differs in cells that have seen stimuli previously.
Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation.
Cell line, Treatment
View SamplesThe effect of drugs, disease and other perturbations on mRNA levels are studied using gene expression microarrays or RNA-seq, with the goal of understanding molecular effects arising from the perturbation. Previous comparisons of reproducibility across laboratories have been limited in scale and focused on a single model. The use of model systems, such as cultured primary cells or cancer cell lines, assumes that mechanistic insights derived with would have been observed via in vivo studies. We examined the concordance of compound-induced transcriptional changes using data from several sources: rat liver and rat primary hepatocytes (RPH) from Drug Matrix (DM) and open TG-GATEs (TG), primary human hepatocytes (HPH) from TG, and mouse liver / HepG2 results from the Gene Expression Omnibus (GEO) repository. Gene expression changes for treatments were normalized to controls and analyzed with three methods: 1) gene level for 9071 high expression genes in rat liver, 2) gene set analysis (GSA) using canonical pathways and gene ontology sets, 3) weighted gene co-expression network analysis (WGCNA). Co-expression networks performed better than genes or GSA on a quantitative metric when comparing treatment effects within rat liver and rat vs. mouse liver. Genes and modules performed similarly at Connectivity Map-style analyses, where success at identifying similar treatments among a collection of reference profiles is the goal. Comparisons between rat liver and RPH, and those between RPH, HPH and HepG2 cells reveal low concordance for all methods. We investigate differences in the baseline state of cultured cells in the context of drug-induced perturbations in rat liver and highlight the striking similarity between toxicant-exposed cells in vivo and untreated cells in vitro.
Assessing Concordance of Drug-Induced Transcriptional Response in Rodent Liver and Cultured Hepatocytes.
Sex, Specimen part
View Samples