The Keap1/Nrf2 signaling pathway is a tractable target for the pharmacological prevention of tumorigenesis. 3H-1,2-dithiole-3-thione (D3T) and 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) are representative members of two classes of Nrf2-activating chemopreventive agents. Natural dithiolethiones have been widely used in clinical trials for cancer chemoprevention. Synthetic triterpenoids, however, have been shown to be significantly more potent Nrf2 activators and are under clinical evaluation for the treatment of chronic kidney disease. This study seeks to characterize the structure-activity relationship between D3T and CDDO-Im in mouse liver tissue. To this end we treated Wt and Nrf2-null mice with 300 umol/kg bw D3T and 3, 10, and 30 umol/kg bw CDDO-Im every other day for 5 days and evaulated global gene expression changes as a product of both treamtent and genotype using Affymetrix microarray.
Pharmacogenomics of Chemically Distinct Classes of Keap1-Nrf2 Activators Identify Common and Unique Gene, Protein, and Pathway Responses In Vivo.
Sex, Age, Specimen part
View SamplesYeast transcription factor Yap1 mediates adaptive response against H2O2 and the cystein thiol reactive Michael acceptor, N-ethylmaleimid (NEM) and acrolein. The response against H2O2 was found to be distinct from that against NEM and acrolein.
Yap1 activation by H2O2 or thiol-reactive chemicals elicits distinct adaptive gene responses.
Treatment
View SamplesCombining genome-wide microarray and functional analyses, we found that EGFR activation abrogates barrier function, increasing transepidermal water loss (TEWL) and transepithelial permeability of water-soluble ions and higher molecular weight dextrans, in part by disrupting the expression of tight junction proteins. EGF decreases certain lipid matrix free fatty acids and ceramides by its actions to repress the expression of specific biosynthetic enzymes.
EGFR regulation of epidermal barrier function.
Specimen part
View SamplesTCDD increased expression of numerous differentiation specific genes and decreased expression of numerous genes involved in mitochondrial health and redox homeostasis
2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated production of reactive oxygen species is an essential step in the mechanism of action to accelerate human keratinocyte differentiation.
Specimen part, Cell line
View SamplesThe activities of the dithiolethione analogs, D3T, OLT, and TBD are pharmacologically well-understood. These compounds act as chemopreventive agents whose ability is to block or diminish early stages of carcinogenesis. In addition, the three compounds are classified as monofunctional Phase II enzyme inducers and activate the same pathway, namely the Keap1-Nrf2 signal pathway. The three dithiolethiones were showed to ameliorate the AFB1-induced toxicity through increasing phase II enzymes including glutathione S-transferase (GST). The parent D3T was observed to be the most potent chemoprotective agent. Oltipraz, a clinically approved drug, has been shown to exhibit less efficacy than its analogs for inhibition of aflatoxin-induced hepatic foci.TBD was suggested to be better than OLT as a chemopreventive agent because of its reduced toxicity profile.
Chemical genomics of cancer chemopreventive dithiolethiones.
No sample metadata fields
View SamplesNlrp10-deficient mice have a profound defect in helper T cell-driven immune responses. T cell priming is impaired due to a defect in the emigration of a dendritic cells from inflamed tissue and antigen transport to draining lymph nodes. DC chemotaxis to CCR7-dependent and independent ligands is intact in the absence of Nlrp10.
NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells.
Specimen part, Treatment
View SamplesPreviously, we observed that a tick salivary protein named sialostatin L2 (SL2) mitigates caspase 1-mediated inflammation upon Anaplasma phagocytophilum infection. Here we are performing next-generation sequencing to determine the global effect of SL2 upon A. phagocytophilum infection of macrophages. Overall design: BMDMs were treated by 4 different conditions (including non-treated, treated by SL2, treated by Anaplasma, and by Anaplasma and SL2, each treatment was performed in triplicate) followed by the extraction of total RNA and deep sequencing by Illumina
The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation.
No sample metadata fields
View SamplesS-adenosylmethionine (SAM) is the methyl donor for biological methylation modifications that regulate protein and nucleic acid functions. Here we show that methylation of a phospholipid, phosphatidylethanolamine (PE), is the major consumer of SAM in budding yeast. The induction of phospholipid biosynthetic genes is accompanied by induction of the enzyme that hydrolyzes S-adenosylhomocysteine (SAH), a product and inhibitor of methyltransferases. Beyond its function for the synthesis of phosphatidylcholine (PC), the methylation of PE facilitates the turnover of SAM for the synthesis of cysteine and glutathione. Strikingly, cells that lack PE methylation accumulate SAM, which leads to hypermethylation of histones and the major phosphatase PP2A, dependency on cysteine, and sensitivity to oxidative stress. Without PE methylation, particular sites on histones then become methyl sinks to enable the turnover of SAM. These findings reveal an unforeseen metabolic function for phospholipid and histone methylation intrinsic to the life of a cell. Overall design: Two biological replicates of wild type and cho2? cells in YPL media, in SL media after 1 hour and in SL media after 3 hour were collected for sequencing.
A Metabolic Function for Phospholipid and Histone Methylation.
Cell line, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Divergent transcriptomic responses to aryl hydrocarbon receptor agonists between rat and human primary hepatocytes.
Sex, Age, Specimen part
View Samples(Abstract) Toxicogenomics has great potential for enhancing our understanding of environmental chemical toxicity, hopefully leading to better-informed human health risk assessments. This study employed toxicogenomic technology to reveal species differences in response to two prototypical aryl hydrocarbon receptor (AHR) agonists, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the polychlorinated biphenyl (PCB) congener PCB 126. Dose responses of primary cultures of rat and human hepatocytes were determined using species-specific microarrays sharing over 4,000 gene orthologs. Forty-seven human and 79 rat genes satisfied dose response criteria for both chemicals and were subjected to further analysis including the calculation of EC50 and the relative potency (REP) of PCB 126 for each gene. Only 5 responsive orthologous genes were shared between the two species, yet the geometric mean of the REPs for all rat and human modeled responsive genes were 0.06 (95% Confidence Interval (CI); 0.03-0.1) and 0.002 (95% CI; 0.001-0.005), respectively, suggesting broad species differences in the initial events that follow AHR activation but precede toxicity. This indicates that there are species differences in both the specific genes that responded and the agonist potency and relative potency for those genes. This observed insensitivity of human cells to PCB 126 is consistent with more traditional measurements of AHR activation (i.e., CYP1A1 enzyme activity) and suggests that the species difference in PCB 126 sensitivity is likely due to certain aspects of AHR function. That a species divergence also exists in this expanded AHR-regulated gene repertoire is a novel finding and should help when extrapolating animal data to humans.
Divergent transcriptomic responses to aryl hydrocarbon receptor agonists between rat and human primary hepatocytes.
Sex, Age, Specimen part
View Samples