Cholestasis may cause cholemic nephropathy that can be modelled in common bile duct ligated (CBDL) mice. We aimed to explore the therapeutic efficacy and mechanisms of norursodeoxycholic acid (norUDCA) in cholemic nephropathy. To determine whether norUrsodeoxycholic acid (norUDCA) prevents cholemic nephropathy in long-term CBDL mice, a norUDCA-enriched diet (0.125% w/v, corresponding to 200 mg/kg/day for a mouse of 25 g body weight eating about 4g daily) or a standard mouse diet (Sniff, Soest, Germany) were started 5 days prior to CBDL and were continued until harvesting 3 weeks thereafter. For transcriptional profiling using microarray technology, we compared sham-operated (SOP) mice and 3-week CBDL mice that were either fed 0.125% norUDCA-enriched or standard mouse diets.
NorUrsodeoxycholic acid ameliorates cholemic nephropathy in bile duct ligated mice.
Specimen part
View SamplesBackground and aims: Signal transducer and activator of transcription 3 (Stat3) is the main mediator of interleukin-6 type cytokine signaling required for hepatocyte proliferation and hepatoprotection but its role in sclerosing cholangitis (SC) and other cholestatic liver diseases remains unresolved. Methods: We investigated the role of Stat3 in inflammation-induced cholestatic liver injury and used mice lacking the multidrug resistance gene 2 (mdr2-/-) as a model for SC. Results: We demonstrate that conditional inactivation of stat3 in hepatocytes and cholangiocytes (stat3hc) of mdr2-/- mice strongly aggravated bile acid-induced liver injury and fibrosis. Similarly, stat3hc mice are more sensitive to cholic acid feeding than control mice. Global gene expression analysis demonstrated that hepatoprotective signals via epidermal growth factor and insulin-like growth factor 1 are affected upon loss of Stat3. Conclusions: Our data suggest that Stat3 protects cholangiocytes and hepatocytes from bile acid-induced damage thereby preventing liver fibrosis in cholestatic diseases.
Signal transducer and activator of transcription 3 protects from liver injury and fibrosis in a mouse model of sclerosing cholangitis.
Age, Specimen part
View SamplesBET inhibitors (BETi) target bromodomain-containing proteins and are currently being evaluated as anti-cancer agents. We discovered that the maximal therapeutic effects of BETi in a Myc-driven B cell lymphoma model required an intact host immune system. Genome-wide analysis of the BETi induced transcriptional response identified the immune checkpoint ligand Cd274 (Pd-l1) as a Myc-independent, BETi target-gene. BETi directly repressed constitutively expressed and IFN-? induced CD274 expression across different human and mouse tumor cell lines and primary patient samples. Mechanistically, BETi decreased Brd4 occupancy at the Cd274 locus without any change in Myc occupancy, resulting in transcriptional pausing and rapid loss of Cd274 mRNA production. Finally, targeted inhibition of the PD1/PD-L1 axis by combining anti-PD1 antibodies and the BETi JQ1 caused synergistic responses in mice bearing Myc-driven lymphomas. Our data uncovers a novel interaction between BETi and the PD-1/PD-L1 immune-checkpoint and provides novel insight into the transcriptional regulation of CD274. Overall design: RNA Sequencing of Eµ-Myc lymphoma cell lines treated for 2 hours with JQ1, or DMSO vehicle.
BET-Bromodomain Inhibitors Engage the Host Immune System and Regulate Expression of the Immune Checkpoint Ligand PD-L1.
Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Host Transcription Profile in Nasal Epithelium and Whole Blood of Hospitalized Children Under 2 Years of Age With Respiratory Syncytial Virus Infection.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesGlobal microarray (HG U133 Plus 2.0) was used to investigate the effects of resistance exercise and resistance training on the skeletal muscle transcriptome profile of 28 young and old adults. Vastus lateralis muscle biopsies were obtained pre and 4hrs post resistance exercise in the beginning (untrained state) and at the end (trained state) of a 12 wk progressive resistance training program.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part, Time
View SamplesGlobal microarray (HG U133 Plus 2.0) was used for the first time to investigate the effects of resistance exercise on the transcriptome in slow-twitch myosin heavy chain (MHC) I and fast-twitch MHC IIa muscle fibers of young and old women. Vastus lateralis muscle biopsies were obtained pre and 4hrs post resistance exercise in the beginning (untrained state) and at the end (trained state) of a 12 wk progressive resistance training program.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part, Subject, Time
View SamplesGlobal microarray (HG U133 Plus 2.0) was used to investigate the basal level skeletal muscle transcriptome profile of young and old adults. One vastus lateralis muscle biopsy was obtained in the basal state from 36 different subjects.
Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults.
Sex, Specimen part
View SamplesOverexpression of p21 in NEMOhepa animals protects against DNA damage, acceleration of hepatocarcinogenesis and cholestasis. As strengthened by our LPS stimulation experiments, we identified a novel protective role of p21 against DNA damage.
p21 ablation in liver enhances DNA damage, cholestasis, and carcinogenesis.
Sex, Specimen part
View SamplesDLK1/FA-1 (delta-like 1/fetal antigen-1) is a transmembrane protein belonging to Notch/Delta family that acts as a membrane-associated or a soluble protein to regulate regeneration of a number of adult tissues. Here, we examined the role of DLK1/FA-1 in bone biology using osteoblast-specific-Dlk1 over-expressing mice (Col1-Dlk1). Col1-Dlk1 mice displayed growth retardation and significantly reduced total body weight and bone mineral density (BMD). CT-scanning revealed a reduced trabecular and cortical bone volume fraction. Tissue-level histomorphometric analysis demonstrated decreased bone formation rate and enhanced bone resorption in Col1-Dlk1 as compared to WT. At a cellular level, DLK1 markedly reduced the total number of bone marrow (BM)-derived CFU-F, as well as their osteogenic capacity. In a number of in vitro culture systems, DLK1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of pro-inflammatory bone resorbing cytokines (e.g, Il7, Tnfa and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of DLK1 in bone marrow by activated T-cells. However, Dlk1-/- mice were protected from ovx-induced bone loss. Thus, we identified DLK1 as a novel regulator of bone mass that function to inhibit bone formation and to stimulate bone resorption. Increasing DLK1 production by T-cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss.
DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice.
Specimen part
View SamplesWe report an applicaton of small RNA sequencing using high throughput next generation sequencing to identify the small RNA content of cell lines. By sequencing over 30 million reads we could identify a new class of small RNAs previousy observed with tiling arrays and mapping to promoter regions of coding genes. We also identified a large number of small RNAs corresponding to internal exons of coding genes. By using different enzymatic treatments and immunoprecipitation experiments, we have determined that both the promoter associated small RNAs as well as ones within the body of the genes bear 5'' cap structures. Overall design: Examination of the expression of small RNAs (<200nt).
Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs.
No sample metadata fields
View Samples