The regional specificity and timing of gene activation following chemotherapy, and how this relates to subsequent mucositis development is currently unknown. The aim of the study was therefore to determine the early time course of gene expression changes along the gastrointestinal tract (GIT) of the DA rat following irinotecan treatment, so as to provide an insight into the genetic component of mucositis.
Gene expression analysis of multiple gastrointestinal regions reveals activation of common cell regulatory pathways following cytotoxic chemotherapy.
Sex, Age
View SamplesDifferent inbred strains of rats differ in their susceptibility to OIR, an animal model of human retinopathy of prematurity. We examined gene expression profiles in Fischer 344 (F344, resistant to OIR) and Sprague Dawley (SD, susceptible to OIR) rats at the early time point of day 3 to identifying gene pathways related to the underlying genetic cause of phenotypic differences between strains.
Gene expression microarray analysis of early oxygen-induced retinopathy in the rat.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Clinical Utility of a STAT3-Regulated miRNA-200 Family Signature with Prognostic Potential in Early Gastric Cancer.
Age, Specimen part
View SamplesThe role of microbe in promoting the initiation of gastric cancer (GC), the third most lethal cancer worldwide, are ill-defined. Here, we found that tumor size and weight in gp130F/F mouse stomach at condition were significantly reduced compared to those of at SPF condition. To investigate the underlying mechanism and how host genes were regulated in the presence/absence of microbe, arrays were performed in stomach tissue from gp130F/F and WT at 4 week old at SPF and GF conditions.
Clinical Utility of a STAT3-Regulated miRNA-200 Family Signature with Prognostic Potential in Early Gastric Cancer.
Age, Specimen part
View SamplesStroke is a leading cause of adult disability and death. Inflammation plays an important role in stroke pathology, but the factors which promote brain inflammation in this setting remain to be fully defined. Here we investigate the meninges, the membranes that envelop the brain, for a potential role in modulating immune cell trafficking to the brain. We also investigate the potential of mast cells (MCs) to modulate this response as MCs are often considered as 'first responders' playing a critical role in the initiation and development of inflammation in many disease settings. We find that stroke increases expression of inflammatory and immune response genes in the meninges in mice consistent with a potential role in modulating immune cell trafficking. Moreover, genetic and cell transfer approaches identify MCs as important modulators of this response.
Evidence that meningeal mast cells can worsen stroke pathology in mice.
Sex, Specimen part, Treatment
View SamplesHITS-CLIP of control and transfected cells to find direct targetting of miR-200 family to mRNA
Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion.
No sample metadata fields
View SamplesThe differentiated state of somatic cells provides barriers for the efficient derivation of induced pluripotent stem cells (iPSCs). To address why some cell types reprogram more readily than others, we studied the effect of combined modulation of cellular signaling pathways. This revealed that inhibition of TGF together with activation of Wnt signaling in presence of ascorbic acid allows >80% of murine fibroblasts to acquire pluripotency after one week of reprogramming factor expression. In contrast, hepatic progenitors and blood progenitors predominantly required only TGF inhibition or canonical Wnt activation, respectively, to reprogram at efficiencies approaching 100%. Strikingly, blood progenitors reactivated endogenous pluripotency loci in a highly synchronous manner. We further demonstrate that expression of specific chromatin-modifying enzymes and reduced TGF/MAP kinase activity are intrinsic properties associated with the unique reprogramming response of these cells. Together, our observations define novel cell type-specific requirements for the rapid and synchronous reprogramming of somatic cells.
Combinatorial modulation of signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC reprogramming.
Specimen part, Time
View SamplesCharacterization of the transcriptome of normal and abnormal embryos. Overall design: Gene expression profiling of every mono and trisomy.
Human blastocysts of normal and abnormal karyotypes display distinct transcriptome profiles.
Specimen part, Subject
View SamplesThe human steroid receptor RNA activator (SRA) gene encodes both non-coding RNAs (ncRNAs) and protein-generating isoforms. However, the breadth of endogenous target genes that might be regulated by SRA RNAs remains largely unknown. To address this, we depleted SRA RNA in two human cancer cell lines (HeLa and MCF-7) with small interfering RNAs, then assayed for changes in gene expression by microarray analyses using Affymetrix HGU133+2 arrays. We also tested if SRA depletion affects estradiol-regulated genes in MCF-7 breast cancer cells.
Research resource: expression profiling reveals unexpected targets and functions of the human steroid receptor RNA activator (SRA) gene.
Cell line
View SamplesSimilar to the bone marrow, the mammary gland contains a distinct population of Hoechst-effluxing side population cells, MG-SPs. To better characterize MG-SPs, their microarray gene profiles were compared to the remaining cells, which retain Hoechst dye (MG-NSPs). For analysis, gene ontology (GO) that describes genes in terms of biological processes and ontology traverser (OT) that performs enrichment analysis were utilized. OT showed that MG-SP specific genes were enriched in the GO categories of cell cycle regulation and checkpoints, multi-drug resistant transporters, organogenesis, and vasculogenesis. The MG-NSP upregulated genes were enriched in the GO category of cellular organization and biogenesis which includes basal epithelial markers, p63, smooth muscle actin (SMA), myosin, alpha-6 integrin, cytokeratin (CK) 14, as well as luminal markers, CK8 and CD24. Additional studies showed that a higher percentage of MG-SPs exist in the G1 phase of the cell cycle compared to the MG-NSPs. G1 cell cycle block of MG-SPs may be explained by higher expression of cell cycle negative regulatory genes such as TGF-beta2 (transforming growth factor-beta2), IGFBP-5 (insulin like growth factor binding protein-5), P18 INK4C and Wnt-5a (wingless-5a). Accordingly, a smaller percentage of MG-SPs expressed nuclear b-catenin, possibly as a consequence of the higher expression of Wnt-5a. In conclusion, microarray gene profiling suggests that MG-SPs are a lineage deficient mammary gland sub-population expressing key genes involved in cell cycle regulation, development and angiogenesis.
Transcriptional profiling of mammary gland side population cells.
No sample metadata fields
View Samples