Background
Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression.
Specimen part
View SamplesMammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large Lamina Associated Domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of ~400 maps reveals a core architecture of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts are more sensitive to a change in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, single-cell gene expression and chromatin accessibility analysis shows that loci with consistent NL contacts are expressed at lower levels and are more consistently inaccessible than loci with lower contact frequencies. These results highlight fundamental principles of single cell chromatin organization. Overall design: In this dataset, single-cell mRNA sequencing results from 96 single KBM7 cells have been deposited
Genome-wide maps of nuclear lamina interactions in single human cells.
No sample metadata fields
View SamplesNormal pregnancy requires adaptations of the maternal vasculature. During preeclampsia these adjustments are not well established, resulting in maternal hypertension and proteinuria. The effects of preeclampsia on the maternal vasculature are not yet fully understood. We aimed to identify gene expression differences in the aorta between non pregnant, healthy pregnant, and experimental preeclamptic rats using a genome wide approach.
Experimental preeclampsia in rats affects vascular gene expression patterns.
Specimen part
View SamplesWOX5 maintains columella stem cells in the Arabidopsis root and prevents their differentiation. In order to understand the molecular mode of WOX5 action the genes differentially expressed by WOX5 inducible over-expression were determined by analysis of microarray hybridizations. Seedlings transformed with a dexamethasone inducible WOX5 construct were induced for one or four hours with dexamethasone or a mock solution. Other seedlings were treated one hour with cycloheximide ( a protein synthesis inhibitor to reduce secondary transcriptional effects after WOX5 activation) and either dexamethasone or a mock solution. Root tips were harvested, RNA extracted, and the RNA samples prepared for hybridization to Affymetrix microarrays. Potential target genes of WOX5 were further analyzed by transcriptional markers, qPCR and EMSA (electrophoretic mobility shift assay).
Organizer-Derived WOX5 Signal Maintains Root Columella Stem Cells through Chromatin-Mediated Repression of CDF4 Expression.
Specimen part, Compound, Time
View SamplesBackground. Cellular senescence is a mechanism that virtually irreversibly suppresses the proliferative capacity of cells in response to various stress signals. This includes the expression of activated oncogenes, which cause Oncogene-Induced Senescence (OIS). A body of evidence points to the involvement of chromatin reorganization, including the formation of senescence-associated heterochromatic foci (SAHF). The nuclear lamina (NL) is an important contributor to genome organization and has been involved in cellular senescence and organismal aging. It interacts with multiple regions of the genome called lamina-associated domains (LADs). Some LADs are cell type-specific, while others are conserved between cell types and are referred to as constitutive LADs. Here, we used DamID to investigate the changes in genome-NL interactions in a model of OIS triggered by the expression of the BRAFV600E oncogene.Results. We found that OIS cells lose most of their constitutive LADs (cLADS), suggesting the loss of a specific mechanism that targets cLADs to the NL. In addition, multiple genes relocated to the NL. Unexpectedly, they were not repressed, implying the abrogation of the repressive activity of the NL during OIS. Finally, OIS cells displayed an increased association of telomeres with the NL.Conclusions. Our study reveals that senescent cells acquire a new type of LAD organization and suggest the existence of as yet unknown mechanisms that tether cLADs to the NL and repress gene expression at the NL.
Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence.
Specimen part, Cell line, Subject, Time
View SamplesIncreased miR-135a levels are observed in human patients with temporal lobe Epilepsy (TLE) and in experimental animal models. Upon targeting the increased miR-135a levels in vivo using antagomirs in kainic acid induced status epilepticus mouse model of TLE, we observed a strong reduction of spontaneous recurrent seizures. To understand this further and to find target mRNAs that potentially mediate the seizure suppressive function of miR-135a, we performed immunoprecipitation using biotin tagged miRNA mimics, followed by RNAsequencing (RNAseq). We found several novel neuronal targets of miRNA-135a and identified Mef2a as a key target in this study. Here we report the total RNAseq data. Overall design: N2A cells were transfected with biotin tagged miRNA mimics for miR-135a and negative control and immunoprecipitations were performed. N = 3 replicates of IP and input samples for each condition were generated and sequenced on illumina platform for total RNA for identification of novel targets of miR-135a.
Antagonizing Increased <i>miR-135a</i> Levels at the Chronic Stage of Experimental TLE Reduces Spontaneous Recurrent Seizures.
Cell line, Subject
View SamplesWe have analysed a family with an autosomal recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship.
Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy.
Sex, Specimen part
View SamplesSmoking-induced lung disease is one of the most prevalent forms of lung disease but also one of the more diverse. Based on the phenotypic diversity caused by the same environmental stress, we hypothesized that smoking may induce changes in lung cell expression of genes that, with specific variants, are causative of monogenic lung disease, i.e., not that smoking induces a phenocopy of a genetic disease, but smoking may subtly modify the expression of genes known to be associated with genetic disorders with distinct lung disease phenotypes. To assess this hypothesis, and based on the knowledge that most smoking-related disease phenotypes start in the small airway epithelium, we asked: are the genes associated with the monogenic lung disorders expressed in the small airway epithelium, and if so, does smoking alter the expression of these genes? To accomplish this, we examined small airway epithelium expression of 92 genes known to be associated with 17 monogenic lung disorders in 230 samples of small airway epithelium (SAE) obtained from healthy nonsmokers and healthy smokers without any clinical evidence of disease. Of the 86 monogenic disorder-related genes we found expressed in the SAE, strikingly, 37 were significantly differentially expressed in normal smokers compared to normal nonsmokers (p<0.05, Benjamini-Hochberg correction for multiple comparisons). The data demonstrates that the effect of smoking on the transcriptome of small airway epithelium includes significantly altered regulation of the genes responsible for known monogenic disorders.
Cigarette Smoking Induces Changes in Airway Epithelial Expression of Genes Associated with Monogenic Lung Disorders.
Sex, Age, Race
View SamplesThis study was designed to identify candidate genes associated with iron efficiency in soybeans. Two genotypes, Clark (PI548553) and IsoClark (PI547430), were grown in both iron sufficient (100uM Fe(NO3)3) and iron deficient (50uM Fe(NO3)3) hydroponics conditions. The second trifoliate was harvested for RNA extraction for the microarray experiment. Candidate genes were identified by comparing gene expression profiles within genotypes between the two iron growth conditions.
Integrating microarray analysis and the soybean genome to understand the soybeans iron deficiency response.
No sample metadata fields
View SamplesIn order to identify the gene targets of frequently altered chromosomal regions in retinoblastoma, a meta-analysis of genome-wide copy number alterations studies on primary retinoblastoma tissue and retinoblastoma cell lines was performed. Published studies were complemented by copy number and gene expression analysis on primary and cell line samples of retinoblastoma. This dataset includes the gene expression data of the retinoblastoma cell lines
A Meta-Analysis of Retinoblastoma Copy Numbers Refines the List of Possible Driver Genes Involved in Tumor Progression.
Specimen part, Cell line
View Samples