Identification of AP-2d target genes in the midbrain of E15 mouse embryos
AP-2δ is a crucial transcriptional regulator of the posterior midbrain.
Specimen part
View SamplesMicroarray comparisons of polysome loading in wild-type Arabidopsis and eif3h mutant
On the functions of the h subunit of eukaryotic initiation factor 3 in late stages of translation initiation.
No sample metadata fields
View SamplesMicroarray comparisons of transcript level in wild-type Arabidopsis and eif3h mutant plants.
On the functions of the h subunit of eukaryotic initiation factor 3 in late stages of translation initiation.
No sample metadata fields
View SamplesIdentification of innate immune responses in the livers of mice infected with liver-stage arresting, transgenic, Plasmodium yoelii parasites. Overall design: Whole liver samples from mock and P. yoelli fabb/f- infected C57BL/6 and BALB/cJ mice. Samples were taken 1 and 3 days post infection
Interferon-mediated innate immune responses against malaria parasite liver stages.
Specimen part, Cell line, Subject
View SamplesAdenosine binds to 4 G protein-coupled receptors located on the cardiomyocyte (A1-R, A2a-R, A2b-R and A3-R) and modulates cardiac function during both ischemia and load-induced stress. While the role of adenosine receptor-subtypes has been well defined in the setting of ischemia-reperfusion, far less is known regarding their roles in protecting the heart during other forms of cardiac stress.
Identification of candidate long noncoding RNAs associated with left ventricular hypertrophy.
Specimen part
View SamplesPlant BZR1-BAM transcription factors contain a -amylase (BAM)-like domain, characteristic of proteins involved in starch breakdown. The enzyme-derived domains appear to be non-catalytic, but determine the function of the Arabidopsis thaliana BZR1-BAMs (BAM7 and BAM8) during transcriptional initiation. Microarray experiments with plants overexpressing different mutant versions of the proteins show that only functional BZR1-BAM variants deregulate gene expression and cause leaf developmental abnormalities. Transcriptional changes caused by overexpression of the BZR1 domain alone indicate that the BAM domain increases selectivity for the preferred cis-regulatory element BBRE (BZR1-BAM Responsive Element).
The Enzyme-Like Domain of Arabidopsis Nuclear β-Amylases Is Critical for DNA Sequence Recognition and Transcriptional Activation.
Age, Specimen part, Treatment
View SamplesHere we compared the expression of an engineered kidney tissue, created by recombining an in vitro budded Wolffian duct with fresh E13 metanephric mesenchyme, with that of three in vivo rat embryonic kidney timepoints (E13, E18, and week 4)
Staged in vitro reconstitution and implantation of engineered rat kidney tissue.
No sample metadata fields
View SamplesPIWI interacting RNAs (piRNAs) provide defense against transposable element (TE) expansion in the germline of metazoans. piRNAs are processed from the transcripts encoded by specialized heterochromatic clusters enriched in damaged copies of transposons. How these regions are recognized as a source of piRNAs is still elusive. The aim of this study is to determine how transgenes that contain a fragment of the LINE-like I transposon lead to an acquired TE resistance in Drosophila. We show that such transgenes, being inserted in unique euchromatic regions which normally do not produce small RNAs, become de novo bidirectional piRNA clusters that silence I-element activity in the germline. Strikingly, small RNAs of both polarities are generated from the entire transgene and flanking genomic sequences — not only from the transposon fragment. Chromatin immunoprecipitation analysis shows that in ovaries the trimethylated histone 3 lysine 9 (H3K9me3) mark associates with transgenes producing piRNAs. We show that transgene-derived hsp70 piRNAs stimulate in trans cleavage of cognate endogenous transcripts with subsequent processing of the non-homologous parts of these transcripts into piRNAs. Overall design: The fractions of small RNAs (19-29 nt) from ovaries of wild type and 11 transgenic lines of Drosophila melanogaster were sequenced using Illumina HiSeq 2000.
De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment.
Specimen part, Subject
View SamplesHuman adult mesenchymal stromal cells (hMSC) have the potential to differentiate into chondrogenic, adipogenic or osteogenic lineages, providing a potential source for tissue regeneration. An important issue for efficient bone regeneration is to identify factors that can be targeted to promote the osteogenic potential of hMSCs. Using transcriptomic analysis, we found that integrin alpha5 (ITGA5) expression is upregulated during dexamethasone-induced hMSCs osteoblast differentiation. Gain-of-function studies showed that ITGA5 promotes the expression of osteoblast phenotypic markers as well as in vitro osteogenesis in hMSCs. Downregulation of endogenous ITGA5 using shRNA blunted osteoblast marker expression and osteogenic differentiation. Pharmacological and molecular analyses showed that the enhanced hMSCs osteoblast differentiation induced by ITGA5 was mediated by activation of FAK/ERK1/2-MAPKs and PI3K signaling pathways. Remarkably, activation of ITGA5 using a specific antibody that primes the integrin or a peptide that specifically activates ITGA5 was sufficient to enhance ERK1/2-MAPKs and PI3K signaling and to promote osteoblast differentiation and osteogenic capacity of hMSCs. We also demonstrate that hMSCs engineered to over-express ITGA5 exhibited a marked increase in their osteogenic potential in vivo. These findings not only reveal that ITGA5 is required for osteoblast differentiation of adult human MSCs but also provide a novel targeted strategy using ITGA5 agonists to promote the osteogenic capacity of hMSCs, which may be used for tissue regeneration in bone disorders where the recruitment or capacity of MSCs is compromised.
Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis.
Sex, Age, Specimen part, Treatment
View SamplesGenome-wide association studies have identified a locus within the second intron of the FGFR2 gene that is consistently the most strongly associated with estrogen receptor-poisive breast cancer risk. However, we know little about the mechanisms by which the FGFR2 locus mediates risk or the pathways in which multiple risk loci may combine to cause disease. Previously, a systems biology approach was adopted to elucidate the regulatory networks operating in MCF-7 breast cancer cells in order to examine the role of FGFR2 in mediating risk. Here, the same approach has been employed using a number of different estrogen receptor-positive breast cancer cell lines in order to see if the previous findings are reproducible and consistent in estrogen receptor-positive disease.
Regulators of genetic risk of breast cancer identified by integrative network analysis.
Specimen part, Cell line, Treatment
View Samples