Regulatory T cells (Tregs) can suppress a wide variety of cell types, in diverse organ sites and inflammatory conditions. While Tregs possess multiple suppressive mechanisms, the number required for maximal function is unclear. Furthermore, whether any inter-relationship orcross-regulatory mechanisms exist that areused to orchestrate and control their utilization is unknown. Here we assessed the functional capacity of Tregs lacking the ability to secrete both interleukin-10 (IL-10) and IL-35, which individually are required for maximal Treg activity. Surprisingly, IL-10/IL-35-double deficient Tregswere fully functionalin vitro and in vivo. Loss of IL-10 and IL-35 was compensated for by a concurrent increase in cathepsin E (CTSE) expression, enhanced TRAIL (Tnfsf10)expression and soluble TRAIL release, rendering IL-10/IL-35-double deficient Tregsfunctionally dependent on TRAIL in vitro and in vivo. Lastly, while C57BL/6 Tregs are IL-10/IL-35-dependent, Balb/c Tregs, which express high levels of CTSE and enhanced TRAIL expression, are TRAIL-dependent.These data reveal that cross-regulatory pathways exist, which control the utilization of suppressive mechanisms,thereby providing Tregfunctional plasticity.
The plasticity of regulatory T cell function.
Specimen part
View SamplesZinc is both an essential and potentially toxic metal. It is widely believed that oral zinc supplementation can reduce the effects of the common cold; however, there is strong clinical evidence that intranasal (IN) zinc gluconate (ZG) gel treatment for this purpose causes anosmia, or the loss of the sense of smell, in humans. Using the rat olfactory neuron cell line, Odora, we investigated the molecular mechanism by which zinc exposure exerts its toxic effects on olfactory neurons. Following treatment of Odora cells with 100 and 200 µM ZG for 0-24 h, RNA-seq and in silico analyses revealed up-regulation of pathways associated with zinc metal response, oxidative stress, and ATP production. We observed that Odora cells recovered from zinc-induced oxidative stress, but ATP depletion persisted with longer exposure to ZG. ZG exposure increased levels of NLRP3 and IL-1ß protein levels in a time-dependent manner, suggesting that zinc exposure may cause an inflammasome-mediated cell death, pyroptosis, in olfactory neurons. Overall design: 5 treatment groups, 3 replicates/group, 1 control group, 3 groups treated with 100 µM zinc gluconate for increasing time (6, 12, and 24 h), 1 group treated with 200 µM zinc gluconate for 6 h
Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora.
No sample metadata fields
View SamplesRegulatory T cells (Treg) represent a critical immunoregulatory component of the immune system. The signals that maintain Treg stability and potentiate their function remain obscure. Here we show that the immune cell surface ligand semaphorin-4a (Sema4a)
Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis.
Treatment
View SamplesRegulatory T cells (Tregs) are critical for maintaining self-tolerance and immune homeostasis, but their suppressive function can impede effective anti-tumor immune responses. Foxp3 is a transcription factor expressed in Tregs that is required for their function. The pathways and microenvironmental cues governing Foxp3 expression and Treg function are not completely understood. We found that Yes-associated protein (YAP), a co-activator of the Hippo pathway, is highly expressed in Tregs and bolsters Foxp3 expression and Treg function in vitro and in vivo. To assess how YAP influences patterns of gene expression in Tregs, naïve CD4+ T cells and Tregs were isolated from wild type mice and CD4+ T cell lineage-restricted YAP knockout mice (YAPflox/flox, CD4-Cre+). Gene expression by naïve CD4+ T cells and their resting and stimulated Treg counterparts was analyzed by RNASeq. Our findings reveal that YAP ablation undermines expression of multiple genes involved in the TGFß/SMAD signaling pathway in Tregs including Activin. These findings suggest that YAP potentiates activity along a pro-Treg signaling axis. Overall design: The gene expression patterns in naïve T cells and nTregs from Wild type and YAP cKO (YAP flox/flox,CD4-Cre+) mice were assessed and compared using RNASeq. Sequencing was performed using a Illumina Hiseq2000.
YAP Is Essential for Treg-Mediated Suppression of Antitumor Immunity.
Specimen part, Cell line, Treatment, Subject
View SamplesMonoallelic expression of autosomal genes (MAE) is a widespread epigenetic phenomenon which is poorly understood, due in part to current limitations of genome-wide approaches for assessing it. Recently, we reported that a specific histone modification signature is strongly associated with MAE, and demonstrated that it can serve as a proxy of MAE in human lymphoblastoid cells (Nag et al. Elife. 2013 Dec 31;2:e01256). Here, we use murine cells to establish that this chromatin signature is conserved between mouse and human, and is associated with MAE in every tested cell type. Our analyses reveal extensive conservation in the identity of MAE genes between the two species. By applying MAE chromatin signature analysis to a large number of cell and tissue types, we show that the MAE state remains consistent during terminal cell differentiation and is predominant among cell-type specific genes, suggesting a link between MAE and specification of cell identity. Overall design: PolyA RNA purification and subsequent high-throughput sequencing were performed on two independent B-lymphoid clonal cell line, derived from 129S1/SvImJ x CAST/EiJ F1 mice and immortalized with Abelson murine leukemia virus, and on two independent fibroblast clonal cell lines, derived from 129S1/Sv x CAST/EiJ F1 and immortalized with SV40.
Chromatin Signature Identifies Monoallelic Gene Expression Across Mammalian Cell Types.
No sample metadata fields
View SamplesLung transplantation remains the only viable therapy for patients with end-stage lung disease; however, full utilization of this treatment strategy is severely compromised by the lack of donor lung availability. For example, the vast majority of donor lungs available for transplantation are obtained from brain death (BD) individuals. Unfortunately, the autonomic storm which accompanies BD often results in neurogenic pulmonary edema (NPE), thereby either producing irreversible lung injury or leading to primary graft dysfunction following lung transplantation. We previously demonstrated that sphingosine 1-phosphate (S1P), a phospholipid angiogenic factor and major barrier-enhancing agent, as well as S1P analogues serve to reduce vascular permeability and ischemia/reperfusion (I/R) lung injury in rodents via ligation of the S1P1 receptor, S1PR1. As primary lung graft dysfunction is induced by lung vascular endothelial cell barrier dysfunction, we hypothesized that SEW-2871, a S1PR1 agonist, may attenuate NPE when administered to the donor shortly after BD. Significant lung injury was observed 4h after BD in a rat BD model with ~60% increases in BAL total protein, BAL cell counts, and lung tissue W/D weight ratios. In contrast, rats receiving SEW-2871 (0.1 mg/kg) 15 minutes after the induction of BD and assessed 4h later exhibited significant lung protection (~50% reduction, p=0.01) reflected by reduced BAL total protein, BAL cytokines concentrations, BAL albumin, BAL total cell count and lung tissue wet/dry (W/D) weights ratio. Microarray analysis at 4hrs revealed a global impact of both BD and SEW on lung gene expression with differential expression of a subclass of genes enriched in immune/inflammation response pathways across the 4 experimental groups. Overall, SEW served to attenuate the BD-mediated ie gene expression upregulation. Two potentially useful biomarkers, Tnf and Ccrl2, exhibited gene dysregulation by microarray analysis, which was validated by qPCR. We conclude that SEW-2871 significantly attenuates BD-induced lung injury and may serve as a potential candidate to improve human lung donor availability and transplantation outcomes.
A sphingosine 1-phosphate 1 receptor agonist modulates brain death-induced neurogenic pulmonary injury.
Sex, Specimen part, Treatment
View SamplesRegulatory T cells (Tregs) are a barrier to effective anti-tumor immunity. Neuropilin-1 (Nrp1) is required to maintain intratumoral Treg stability and function but is dispensable for peripheral immune homeostasis, Treg-restricted Nrp1 deletion in mice results in profound tumor resistant due to Treg functional fragility. Drivers of Treg fragility, the mechanistic basis of Nrp1 dependency, and the relevance of these processes for human cancer and immunotherapy remain unknown. NRP1 expression on human Tregs in melanoma and HNSCC was highly heterogeneous and correlated with prognosis. Using a mouse model of melanoma in which mutant Nrp1-deficient (Nrp1–/–) and wild type (WT) Tregs could be assessed in a competitive environment, we found that a high proportion of intratumoral Nrp1–/– Tregs produce interferon-? (IFN?), which in turn drove the fragility of surrounding WT Tregs, boosting anti-tumor immunity and facilitating tumor clearance. We also show that IFN?-induced Treg fragility is required for an effective response to PD1 immunotherapy, suggesting that cancer therapies promoting Treg fragility may be efficacious . Overall design: Tregs from B16 tumors and non-draining lymph nodes NDLN from WT, Nrp-1 deficient homozygous and heterozygous mice
Interferon-γ Drives T<sub>reg</sub> Fragility to Promote Anti-tumor Immunity.
Specimen part, Subject
View SamplesRegulatory T cells (T regs) maintain host self-tolerance but are a major barrier to effective cancer immunotherapy. T regs subvert beneficial anti-tumor immunity by modulating inhibitory receptor (IR) expression on tumor infiltrating lymphocytes (TILs); however, the underlying mediators and mechanisms remain elusive. Here we show that interleukin-10 (IL10) and interleukin-35 (IL35; Ebi3/IL12a heterodimer) are divergently expressed by T reg subpopulations in the tumor microenvironment (TME) and cooperatively promote intratumoral T cell exhaustion. T reg -restricted deletion of Il10 and/or Ebi3 resulted in delayed tumor growth, loss of multi-IR expression, and reduced intratumoral CD8 + T cell exhaustion signature. While Il10 or Ebi3 loss was associated with reduced expression of B lymphocyte-induced maturation protein-1 (BLIMP1; Prdm1), IL10 and IL35 differentially impacted effector versus memory T cell fates, respectively, highlighting their differential, partially overlapping but non-redundant regulation of anti-tumor immunity. Our results reveal previously unappreciated cooperative roles for IL10 and IL35, produced by limits effective anti-tumor immunity Overall design: TIL CD8 cells from Treg specific IL10, IL35 and double knockouts, sorted into populations based on exhaustion markers. TIL Tregs sorted based on IL10 and IL35 expression.
Adaptive plasticity of IL-10<sup>+</sup> and IL-35<sup>+</sup> T<sub>reg</sub> cells cooperatively promotes tumor T cell exhaustion.
Specimen part, Subject
View SamplesAbstract: Regulatory T cells (Tregs) maintain host self-tolerance but are a major barrier to effective cancer immunotherapy. Tregs subvert beneficial anti-tumor immunity by modulating inhibitory receptor (IR) expression on tumor infiltrating lymphocytes (TILs); however, the underlying mediators and mechanisms remain elusive. Here we show that interleukin-10 (IL10) and interleukin-35 (IL35; a heterodimer of Ebi3 and IL12?) are reciprocally expressed by Treg-subpopulations in the tumor microenvironment (TME) and cooperatively promote intratumoral T cell exhaustion. Treg-restricted deletion of either Il10/Ebi3 or dual deletion resulted in delayed tumor growth and significant reduction of transcriptomic exhaustion signature associated with reduced expression of B lymphocyte-induced maturation protein-1 (BLIMP1; Prdm1). While the two cytokines share the BLIMP1 axis to drive multi-IR expression; they differentially impact effector vs. memory fate, highlighting their overlapping and non-redundant regulation of anti-tumor immunity. Our results reveal previously unappreciated adaptive plasticity in inhibitory cytokine expression pattern by Tregs in TME for maximal immunosuppression. Data purpose: to understand the segregated cytokine expression pattern and the preferential generation of single cytokine positive Treg subpopulations, we performed single cell RNASeq (scRNAseq) contrasting Tregs isolated from naïve, unchallenged LNs or day 14 B16 tumor from Foxp3Cre-YFP WT mice Overall design: LNs or day 14 B16 tumor from Foxp3Cre-YFP WT mice
Adaptive plasticity of IL-10<sup>+</sup> and IL-35<sup>+</sup> T<sub>reg</sub> cells cooperatively promotes tumor T cell exhaustion.
Specimen part, Cell line, Subject
View SamplesCholecystokinin (CCK) is a satiety hormone produced by discrete enteroendocrine cells scattered among absorptive cells of the small intestine. CCK is released into blood following a meal; however, the mechanisms inducing hormone secretion are largely unknown. Ingested fat is the major stimulant of CCK secretion. We recently identified a novel member of the lipoprotein remnant receptor family known as immunoglobulin-like domain containing receptor 1 (ILDR1) in intestinal CCK cells and postulated that this receptor conveyed the signal for fat-stimulated CCK secretion. In the intestine, ILDR1 is expressed exclusively in CCK cells. Orogastric administration of fatty acids elevated blood levels of CCK in wild type but not ILDR1-deficient mice, although the CCK secretory response to trypsin inhibitor was retained. The uptake of fluorescently labeled lipoproteins in ILDR1-transfected CHO cells and release of CCK from isolated intestinal cells required a unique combination of fatty acid plus HDL. CCK secretion secondary to ILDR1 activation is associated with increased [Ca2+]i consistent with regulated hormone release. These findings demonstrate that ILDR1 regulates CCK release through a mechanism dependent on fatty acids and lipoproteins and that absorbed fatty acids regulate gastrointestinal hormone secretion.
Immunoglobulin-like domain containing receptor 1 mediates fat-stimulated cholecystokinin secretion.
Specimen part
View Samples