Purpose: Controlling the balance between immunity and immunopathology is crucial for host resistance to pathogens. Upon infection, activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to the production of glucocorticoids (GCs). However, the pleiotropic effects of these steroid hormones make it difficult to decipher their precise role in vivo. Our purpose was to study how GCs regulate the function of group 1 ILCs in spleen and liver upon Murine Cytomegalovirus (MCMV) infection. Methods: We studied the in vivo effect of endogenous GCs released upon MCMV infection on NK cells in spleen and liver and ILC1s in the liver. We compared WT mice with GRNcr1-iCre mice, in which the gene encoding for GC receptor (GR) is selectively deleted in Ncr1+ cells. Results: We found that the regulation of NK function by the GR is required for host protection against MCMV. Mechanistically, endogenous GCs produced shortly after infection induce the selective and tissue-specific expression of the immune checkpoint PD1 on NK cells. This GC-PD1 pathway mediates its immunoregulatory functions by limiting interferon (IFN)-g production by splenic NK cells, preventing lethal immunopathology. Importantly, this regulation does not compromise viral clearance. Conclusions:The fine-tuning of a selective subset of ILCs by the HPA axis preserves tissue integrity without impairing pathogen elimination, revealing a novel aspect of neuro-immune regulation. Overall design: Splenocytes (after NK cell enrichment with the mouse NK Cell Isolation Kit II, Miltenyi Biotec) and liver lymphocytes were pooled from three mice for each genotype. A FACS Aria III (BD Biosciences) was used to sort approximately 5 x 10^5 NK cells from the spleen and liver and 5 x 10^4 liver-resident ILC1s 44h post MCMV infection. We compared gene expression between glucocorticoid receptor (GR)-sufficient and deficient ILCs to identify the genes whose expression is regulated by GCs. Three biological replicates were generated for all samples except for the GRNcr1-iCre liver ILC1s sample (two biological replicates).
Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells.
Sex, Specimen part, Subject
View SamplesHomeostasis of the gut microbiota is pivotal to the survival of the host. Intestinal T cells and Innate Lymphoid cells (ILCs) control the composition of the microbiota and respond to its perturbations. Interleukin 22 (IL-22) plays a pivotal role in the immune control of gut commensal and pathogenic bacteria and is secreted by a heterogeneous population of intestinal T cells, NCR- ILC3 and NCR+ILC3. Expression of NCR by ILC3 is believed to define an irreversible effector ILC3 end-state fate in which these cells are key to control of bacterial infection via their production of IL-22. Here we identify the core transcriptional signature that drives the differentiation of NCR- ILC3 into NCR+ ILC3 and reveal that NCR+ILC3 exhibit more plasticity than originally thought, as NCR+ ILC3 can revert to NCR- ILC3. Contrary to the prevailing understanding of NCR+ ILC3 genesis and function, in vivo analyses of mice conditionally deleted of the key ILC3 genes Stat3, Il22, Tbet and Mcl1 demonstrated that NCR+ ILC3 were not essential for the control of colonic infections in the presence of T cells. However, NCR+ ILC3 were mandatory for homeostasis of the caecum. Our data identify that the interplay of intestinal T cells and ILC3 results in robust complementary fail-safe mechanisms that ensure gut homeostasis. Overall design: Transcriptional profiling of wild-type and T-bet knockout innate lymphoid cells (ILC3) using RNA sequencing
Complementarity and redundancy of IL-22-producing innate lymphoid cells.
Specimen part, Cell line, Subject
View SamplesIn most embryos, the mid-blastula transition is a complex process featuring maternal RNA degradation, cell cycle pause, zygotic transcriptional activation and morphological changes. The nucleocytoplasmic (N/C) ratio has been proposed to control the multiple events at MBT. To understand the global transcriptional response to the changes of the N/C ratio, we profiled wild type and haploid embryos using cDNA microarrays at three developmental stages.
Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition.
No sample metadata fields
View SamplesKaposis sarcoma-associated hepesvirus (KSHV) encodes four genes with homology to human interferon regulatory factors (IRFs). One of these IRFs, the viral interferon regulatory factor 3 (vIRF-3) is expressed in latently infected PEL cells and required for their continuous proliferation. Moreover, vIRF-3 is known to be involved in modulation of the type I interferon response.
Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 3 inhibits gamma interferon and major histocompatibility complex class II expression.
Specimen part, Cell line
View SamplesThe Early Growth Response (Egr) family of transcription factors consists of 4 members (Egr1-4) that are expressed in a wide variety of cell types. A large body of evidence point to a role for Egr transcription factors in growth, survival, and differentiation. A major unanswered question is whether Egr transcription factors serve similar functions in diverse cell types by activating a common set of target genes. Signal transduction cascades in neurons and lymphocytes show striking parallels. Activation of either cell type activates the Ras-MAPK pathway and, in parallel, leads to increases in intracellular calcium stimulating the calcineurin-NFAT pathway. In both cell types, the strength of the activation signal affects the cellular outcomes and very strong stimuli lead to cell death. Notably both these pathways converge on the induction of Egr genes. We believe that downstream targets of Egr transcription factors in lymphocytes may also be activated by Egr factors in activated neurons. There is precedence for common target gene activation in these two cell types: apoptosis in both activated T cells and methamphetamine stimulated neurons occurs via FasL induction by NFAT transcription factors. We propose to use developing T lymphocytes (thymocytes) as a model system for discovery of Egr-dependent target genes for several reasons. First, we have observed a prominent survival defect in thymocytes from mice deficient in both Egr1 and Egr3 (1/3 DKO) and a partial differention block in the immature double negative (DN) stage. In addition, thymocytes are an easily manipulatable cell type, and the DN subpopulation affected in 1/3 DKO mice can be isolated to very high purity. We anticipate that 1/3 DKO thymocytes will provide an excellent experimental system that will provide insight into Egr-dependent transcription in neuronal development, activation, and death.
Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes.
Specimen part, Treatment, Subject
View SamplesThe goal of this study was to determine what genes are up- and down-regulated in response to lupus immune complexes in purified CD14+ monocyte stimulations. Our results have shown that novel genes are induced by immune complexes but the response is less robust when using purified monocytes versus total PBMCs
Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes.
Specimen part, Treatment, Subject
View SamplesWe demonstrate for the first time that the extracellular matrix glycoprotein Tenascin-C regulates the expression of key patterning genes during late embryonic spinal cord development, leading to a timely maturation of gliogenic neural precursor cells. We first show that Tenascin-C is expressed by gliogenic neural precursor cells during late embryonic development. The loss of Tenascin-C leads to a sustained generation and delayed migration of Fibroblast growth factor receptor 3 expressing immature astrocytes in vivo. Furthermore, we could demonstrate an upregulation of Nk2 transcription factor related locus 2 (Nkx2.2) and its downstream target Sulfatase 1 in vivo. A dorsal expansion of Nkx2.2-positive cells within the ventral spinal cord indicates a potential progenitor cell domain shift. Moreover, Sulfatase 1 is known to regulate growth factor signalling by cleaving sulphate residues from heparan sulphate proteoglycans. Consistent with this possibility we observed changes in both Fibroblast growth factor 2 and Epidermal growth factor responsiveness of spinal cord neural precursor cells. Taken together our data clearly show that Tenascin-C promotes the astroglial lineage progression during spinal cord development.
The extracellular matrix molecule tenascin C modulates expression levels and territories of key patterning genes during spinal cord astrocyte specification.
Specimen part
View SamplesNine accessions of Arabidopsis were sampled before and after 14d of cold acclimation at 4°C. Transcript data were combined with metabolite data and related to quantitative measurement of plant freezing tolerance as determined by leaf electrolyte leakage assays.
Natural genetic variation of freezing tolerance in Arabidopsis.
Specimen part
View SamplesAlzheimer's disease (AD) is characterized by massive neurodegeneration and multiple changes in cellular processes, including neurogenesis. Proteolytic processing of the amyloid precursor protein (APP) plays a central role in AD. Due to varying APP processing, several beta-amyloid peptides are generated. In contrast to the form with 40 amino acids, the variant with 42 amino acids is thought to be the pathogenic form triggering the pathophysiological cascade in AD. Here, we studied the transcriptomic response to increased or decreased Abeta42 levels generated in human neuroblastoma cells. Genome-wide expression profiles (Affymetrix)were used to analyze the cellular response to the changed Abeta42 and Abeta40-levels. <br></br><br></br>Human neuroblastoma cell line SH-SY5Y is a thrice cloned (SK-N-SH -> SH-SY -> SH-SY5 -> SH-SY5Y) subline of the neuroblastoma cell line SK-N-SH which was isolated and established in 1970. This cell line has 47 chromosomes. The cells possess a unique marker comprised of a chromosome 1 with a complex insertion of an additional copy of a 1q segment into the long arm, resulting in trisomy of 1q. The cell lines used in this study are SHSY5Y transfected with the constructs pCEP-C99I45F, pCEP-C99V50F, pCEP-C99 wildtype or mock transfected with an empty vector. Independent cell clones of each transfected line were used to provide biological replicates.<br></br> Overexpressed C99 I45F is intracellularly cleaved resulting in high Abeta42, but low Abeta40 levels.<br></br> Overexpressed C99V50F is intracellularly cleaved resulting in low Abeta42, but high Abeta40 levels.<br></br>Overexpressed C99 wildtype is intracellularly cleaved resulting in medium Abeta42 and Abeta40 levels<br></br>Mock is the SHSY5Y cell line transfected with the empty vector pCEP (Invitrogen) as a negative control
New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering.
Cell line, Subject
View Samples