This SuperSeries is composed of the SubSeries listed below.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesWe report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesWe report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesWe report that terahertz (THz) irradiation of mouse mesenchymal stem cells with a pulsed broadband (centered at 10 THz) source, or a single-frequency, 2.52 THz, (SF) laser source, both with weak average power (<1mW/cm2), results in specific heterogenic changes in gene expression. The insignificant differential expression of heat shock and stress related genes as well as our temperature measurements imply a non-thermal response. The microarray survey and RT-PCR experiments demonstrate that at different irradiation conditions distinct groups of genes are activated. Stem cells irradiated for 12 hours with the broadband THz source exhibit an accelerated differentiation toward adipose phenotype, while the 2-hour (broadband or SF) irradiation affects genes transcriptionally active in pluripotent stem cells. Phenotypic and gene expression differences suggest that the THz effect depends on irradiation parameters such as duration and type of THz source, and on the level of stem cell differentiation. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.
Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells.
Specimen part
View SamplesHere we examined virulence activation in Pseudomonas aeruginosa in response to the synthetic kappa opioid agonist U-50, 488 in nutrient poor media where growth conditions are limited and density dependent quorum sensing is not activated.
Pseudomonas aeruginosa overrides the virulence inducing effect of opioids when it senses an abundance of phosphate.
No sample metadata fields
View SamplesDuring extreme physiological stress, the intestinal tract can be transformed into a harsh environment characterized by regio- spatial alterations in oxygen, pH, and phosphate concentration. When the human intestine is exposed to extreme medical interventions, the normal flora becomes replaced by pathogenic species whose virulence can be triggered by various physico-chemical cues leading to lethal sepsis. We previously demonstrated that phosphate depletion develops in the mouse intestine following surgical injury and triggers intestinal P. aeruginosa to express a lethal phenotype that can be prevented by oral phosphate ([Pi]) supplementation.
Prevention of siderophore- mediated gut-derived sepsis due to P. aeruginosa can be achieved without iron provision by maintaining local phosphate abundance: role of pH.
No sample metadata fields
View SamplesP. aeruginosa PAO1 grown as lawns on Nematode Growth Medium prepared without supplementation (NGM Pi<0.1 mM) has high killing ability against C. elegans, however, no mortality in worms has been observed during 48 hrs when feeding on PAO1 lawns grown on phosphate supplemented full NGM Pi 25 mM, pH 6.0 medium.
Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1.
No sample metadata fields
View SamplesWilliams-Beuren Syndrome (WBS) is a neurodevelopmental disorder caused by aa 1.5 Mb microdeletion on human chromosome 7. Although the molecular cause of the disorder is well-established, little is known about the global impact of the deletion on gene expression. Here we profiled the transcriptomes of fibroblast cell lines from 8 young girls with WBS, and 9 sex- and age-matched control individuals
Using transcription modules to identify expression clusters perturbed in Williams-Beuren syndrome.
Sex, Cell line
View SamplesTwo nutrient sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), control yeast growth and metabolism in response to changes in nutrient availability. Starvation for amino acids activates the GAAC pathway, involving Gcn2p phosphorylation of eIF2 and preferential translation of GCN4, a transcription activator of genes involved in amino acid metabolism. TOR senses nitrogen availability and regulates gene expression through transcription factors, such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome in response to amino acid starvation and rapamycin treatment. Of the ~2500 genes whose expression was changed by 2-fold or greater, Gcn4p and Gln3p were required for 542 and 657 genes, respectively. While Gcn4p activates a common core of 57 genes in response to amino acid starvation or rapamycin treatment, the different stress arrangements allow for variations in Gcn4p-directed transcription. With few exceptions, genes requiring Gcn2p eIF2 kinase for induced expression also required Gcn4p, emphasizing the role of Gcn2p as an upstream activator of Gcn4p-directed transcription. There is also significant coordination between the GAAC and TOR pathways, with Gcn4p being required for activation of more genes during rapamycin treatment than Gln3p. Importantly, TOR regulates the GAAC-directed transcription of genes required for assimilation of nitrogen sources, such as -amino-butyric acid. Therefore, yeast has integrated gene expression responses to amino acid abundance and nitrogen source quality through the control of Gcn2p phosphorylation of eIF2 and GCN4 translation.
Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast.
Treatment
View SamplesWound infections are traditionally thought to occur when microbial burden exceeds the innate clearance capacity of host immune system. Here we introduce the idea that the wound environment itself plays a significant contributory role to wound infection.
Pseudomonas aeruginosa wound infection involves activation of its iron acquisition system in response to fascial contact.
No sample metadata fields
View Samples