Aggressive double and triple hit (DH/TH) DLBCL feature activation of Hsp90 stress pathways. Herein, we show that Hsp90 controls post-transcriptional dynamics of key mRNA species including those encoding BCL6, MYC and BCL2. Using a proteomics approach, we found that Hsp90 binds to and maintains activity of eIF4E (eukaryotic translation initiation factor 4E). EIF4E drives nuclear export and translation of BCL6, MYC and BCL2 mRNA. eIF4E RIP-sequencing in DLBCL suggests that nuclear eIF4E controls an extended program that includes BCR signaling, cellular metabolism and epigenetic regulation. Accordingly, eIF4E was required for survival of DLBCL including the most aggressive subtypes DH/TH lymphomas. Indeed, eIF4E inhibition induces tumor regression in cell line and patient-derived tumorgrafts of TH-DLBCL, even in the presence of elevated Hsp90 activity. Targeting Hsp90 is typically limited by counter-regulatory elevation of Hsp70B, which induces resistance to Hsp90 inhibitors. Surprisingly, we identify Hsp70 mRNA as an eIF4E target. In this way, eIF4E inhibition can overcome drug resistance to Hsp90 inhibitors. Accordingly, rational combinatorial inhibition of eIF4E and Hsp90 inhibitors resulted in cooperative anti-lymphoma activity in DH/TH DLBCL in vitro and in vivo. Overall design: We found that eIF4E activity regulates the nuclear export of BCL6, MYC, and BCL2 in DH/TH DLBCLs. To determine the extent of nuclear eIF4E activity in DH/TH DLBCLs and how these programs can support the oncogenic activity of BCL6, MYC and/or BCL2 transcripts, we conducted eIF4E-RIP of nuclear RNA followed by RNA-sequencing in OCI-Ly1 cells in triplicates. To understand the changes in gene expression after ribavarin in a clinically relevant sample, we generated a patient-derived xenograft (PDX) in NSG mice from a de-identified specimen isolated from a patient prior to treatment harboring a triple-hit ABC-type DLBCL. PDX cells from passage four (PDX-4) were implanted into NSG mice. When tumors were palpable, mice were randomized to receive vehicle or 80 mg/kg/b.i.d. ribavarin intraperitoneally for 10 days. We isolated RNA from tumors treated with vehicle (n=2) or ribavarin (n=2) and performed mRNA-seq.
Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphomas.
No sample metadata fields
View SamplesTo examine the impact of tumors on the immune system, we compared global gene expression profiles of peripheral blood T cells from previously untreated patients with B cell chronic lymphocytic leukemia (CLL) with those from age-matched healthy donors. Although the cells analyzed were not part of the malignant clone, analysis revealed differentially expressed genes, mainly involved in cell differentiation in CD4 cells and defects in cytoskeleton formation, vesicle trafficking, and cytotoxicity in CD8 cells of the CLL patients. In coculture experiments using CLL cells and T cells from healthy allogeneic donors, similar defects developed in both CD4 and CD8 cells. These changes were induced only with direct contact and were not cytokine mediated. Identification of the specific pathways perturbed in the T cells of cancer-bearing patients will allow us to assess steps to repair these defects, which will likely be required to enhance antitumor immunity.
Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells.
No sample metadata fields
View SamplesThe mechanisms instructing genesis of neuronal subtypes from mammalian neural precursors are not well-understood. To address this issue, we have characterized the transcriptional landscape of radial glial precursors (RPs) in the embryonic murine cortex. We show that individual RPs express mRNA but not protein for transcriptional specifiers of both deep and superficial layer cortical neurons. Some of these mRNAs, including the superficial versus deep layer neuron transcriptional regulators Brn1 and Tle4, are translationally repressed by their association with the RNA-binding protein Pumilio2 and the 4E-T protein. When these repressive complexes are disrupted in RPs mid-neurogenesis by knocking down 4E-T or Pum2, this causes aberrant co-expression of deep layer neuron specification proteins in newborn superficial neurons. Thus, cortical RPs are transcriptionally primed to generate diverse types of neurons, and a 4E-T-Pum2 complex represses translation of some of these neuronal identity mRNAs to ensure appropriate temporal specification of daughter neurons.
A Translational Repression Complex in Developing Mammalian Neural Stem Cells that Regulates Neuronal Specification.
Specimen part
View SamplesImmune deficiency is common in cancer, but the biological basis for this and ways to reverse it remains elusive. Here we present a mouse model of B cell chronic lymphocytic leukemia (CLL) that recapitulates changes in the non-malignant circulating T cells seen in patients with this illness.1 To validate this model, we examined changes in T cell gene expression, protein expression and function in Em-TCL1 transgenic mice as they developed CLL 2,3 and demonstrate that development of CLL in these transgenic mice is associated with changes in impaired T cell function and in gene expression in CD4 and CD8 T cells similar to those observed in patients with this disease. Infusion of CLL cells into non-leukemia bearing Em-TCL1 mice rapidly induces these changes, demonstrating a causal relationship between leukemia and the induction of T cell changes. This model allows dissection of the molecular changes induced in CD4 and CD8 T cells by interaction with leukemia cells and further supports the concept that cancer results in complex abnormalities in the immune microenvironment.
E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction.
No sample metadata fields
View SamplesThe neural stem cell decision to self-renew or differentiate is tightly regulated by its microenvironment. Here, we have asked about this microenvironment, focusing on growth factors in the embryonic cortex at a time when it is largely comprised of neural precursor cells (NPCs) and newborn neurons. We show that cortical NPCs secrete factors that promote their maintenance while cortical neurons secrete factors that promote differentiation. To define factors important for these activities, we used transcriptome profiling to identify ligands produced by NPCs and neurons, cell surface mass spectrometry to identify receptors on these cells, and computational modeling to integrate these data. The resultant model predicts a complex growth factor environment with multiple autocrine and paracrine interactions. We tested this communication model, focusing on neurogenesis, and identified IFN, Nrtn and glial-derived neurotrophic factor (GDNF) as ligands with unexpected roles in promoting neurogenic differentiation of NPCs in vivo.
Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks.
Specimen part
View SamplesWe used microarrays to compare the gene expression profile in cultured primary neurospheres derived from the subventricular zone of adult (2 m.o.) offspring of mothers treated with PBS or methylglyoxal during pregnancy
A Glo1-Methylglyoxal Pathway that Is Perturbed in Maternal Diabetes Regulates Embryonic and Adult Neural Stem Cell Pools in Murine Offspring.
Specimen part, Treatment
View SamplesGenome-wide analysis was performed on microRNA 155+/+ and -/- Th17 cells to determine the differentially expressed transcripts that are regulated by miR-155. We found that Jarid2 was differentially expressed in absence of miR-155 and highlight the mechanism for the silencing of IL-22 by Jarid2 and PRC2 in miR-155-/- Th17 cells. Overall design: Comparison of transcriptome of Th17 cells in presence or absence of microRNA 155
miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression.
Specimen part, Cell line, Subject
View SamplesIL-21 induces B cell activation, and differentiation into antibody-secreting plasmblasts in vitro. This process is compromised in transitional B cells to gain of function mutations in PIK3CD
Germline-activating mutations in <i>PIK3CD</i> compromise B cell development and function.
Specimen part, Disease
View SamplesHIV-1 Vpr protein is a multifunctional protein which perturbs human transcriptome and interacts with a number of cellular proteins. In this study, we have attempted to explore the efffects of Vpr on human transcriptome and have identified several genes which are involved in innate immune responses.
Genome-wide transcriptional profiling reveals that HIV-1 Vpr differentially regulates interferon-stimulated genes in human monocyte-derived dendritic cells.
Specimen part, Treatment
View SamplesUstilago maydis is a plant-pathogenic fungus that establishes a biotrophic relationship with its host Zea mays. The biotrophic interaction is initiated upon host penetration, and involves expansion of the host plasma membrane around hyphae, which is thought to facilitate the exchange of nutrients and virulence factors. Transcriptional regulators involved in the establishment of an infectious dikaryon and penetration into the host have been identified, however, regulators involved in the post-penetration stages remained to be elucidated. In the study we report the identification of an Ustilago maydis forkhead transcription factor, Fox1, which is exclusively expressed during biotrophic development. Deletion of fox1 results in reduced virulence and impaired tumour development in planta. fox1 hyphae induce plant defences including the overproduction and accumulation of H2O2 in and around infected cells. This oxidative burst acts as an intercellular signal, which elicits a specific host defence response phenotypically represented by the encasement of proliferating hyphae in extensions of the plant cell wall. Maize microarrays experiments were performed to identify genes involved in the observed plant defence responses on leaf tissue infected with U. maydis strain SG200fox1 4 dpi.
The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development.
Specimen part
View Samples