Mutations in several genes expressed in podocytes, including Cd2ap, have been associated with focal segmental glomerulosclerosis in humans. Mutant mouse models provide an opportunity to better understand the molecular pathology that drives these diseases. In this report we use a battery of transgenic-GFP mice to facilitate the purification of all three major cell types of the glomerulus from Cd2ap mutant mice. Both microarrays and RNA-seq were used to characterize the gene expression profiles of the podocytes, mesangial cells and endothelial cells, providing a global dual platform cross-validating dataset. The mesangial cells showed increased expression of profibrotic factors, including thrombospondin, Tgfb2 and Tgfb3, as well as the angiogenesis factor Vegf. They also showed upregulation of protective genes, including Aldh1a2, involved in retinoic acid synthesis, and Decorin, a Tgfb antagonist. Of interest, the mesangial cells also showed significant expression of Wt1, which has generally been considered podocyte specific. The Cd2ap mutant podocytes showed upregulation of proteases as well as genes involved in muscle and vasculature development, and showed a very strong gene expression signature indicating programmed cell death. Endothelial cells showed increased expression of the leukocyte adhesion associated factors Vcam1 and Sele, as well as Midkine (promoting angiogenesis), endothelin, and many genes responsive to cytokines and interferons. This study provides a comprehensive analysis of the changing properties of the three cell types of the glomerulus in Cd2ap mutants, identifying activated and repressed pathways and responsible genes, thereby delivering a deeper molecular understanding of this genetic disease.
No associated publication
Specimen part
View SamplesThe Lim1 gene has essential functions during several stages of kidney development. In particular, a tissue specific knockout in the early metanephric mesenchyme results in the formation of the earliest nephron precursor, the renal vesicle, but failure of this structure to progress to the next stage, the comma shaped body. To better understand the molecular nature of this developmental arrest we used a laser capture microdissection-microarray strategy to examine the perturbed gene expression pattern of the mutant renal vesicles. Among the genes found differently expressed were Chrdl2, an inhibitor of BMP signaling, the pro-apoptotic factor Bmf, as well as myob5, an atypical myosin which modulates chemokine and transferring signaling, and pdgfr1, which is important in epithelial folding. Of particular interest, the microarray data indicated that the Dkk1 gene, which encodes an inhibitor of Wnt signaling, was downregulated nine fold in mutants. This was confirmed by in situ hybridizations. It is interesting to note that Lim1 and Dkk1 mutant mice have striking similarities in phenotype. These results suggest that the Dkk1 gene might be a key downstream effector of Lim1 function.
Laser capture-microarray analysis of Lim1 mutant kidney development.
No sample metadata fields
View SamplesNormal children, children with SIRS, children with sepsis, and children with septic shock.
Genomic expression profiling across the pediatric systemic inflammatory response syndrome, sepsis, and septic shock spectrum.
No sample metadata fields
View SamplesBackground: Septic shock is a heterogeneous syndrome within which probably exist several biological subclasses. Discovery and identification of septic shock subclasses could provide the foundation for the design of more specifically targeted therapies. Herein we tested the hypothesis that pediatric septic shock subclasses can be discovered through genome-wide expression profiling. Methods: Genome-wide expression profiling was conducted using whole blood-derived RNA from 98 children with septic shock, followed by a series of bioinformatic approaches targeted at subclass discovery and characterization. Results: Three putative subclasses (subclasses A, B, and C) were initially identified based on an empiric, discovery-oriented expression filter and unsupervised hierarchical clustering. Statistical comparison of the 3 putative subclasses (ANOVA, Bonferonni correction, p < 0.05) identified 6,934 differentially regulated genes. K means clustering of these 6,934 genes generated 10 coordinately regulated gene clusters corresponding to multiple signaling and metabolic pathways, all of which were differentially regulated across the 3 subclasses. Leave one out cross validation procedures indentified 100 genes having the strongest predictive values for subclass identification. Forty-four of these 100 genes corresponded to signaling pathways relevant to the adaptive immune system and glucocorticoid receptor signaling, the majority of which were repressed in subclass A patients. Subclass A patients were also characterized by repression of genes corresponding to zinc-related biology. Phenotypic analyses revealed that subclass A patients were younger, had a higher illness severity, and a higher mortality rate than patients in subclasses B and C. Conclusions: Genome-wide expression profiling can identify pediatric septic shock subclasses having clinically relevant phenotypes.
Identification of pediatric septic shock subclasses based on genome-wide expression profiling.
Age, Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A gene expression atlas of early craniofacial development.
Specimen part
View SamplesGoal of the experiment: To identify correlated genes, pathways and groups of patients with systemic inflammatory response syndrome and septic shock that is indicative of biologically important processes active in these patients.
Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.
Specimen part, Time
View SamplesBackground: Septic shock heterogeneity has important implications for the conduct of clinical trials and individual patient management. We previously addressed this heterogeneity by indentifying 3 putative subclasses of children with septic shock based on a 100-gene expression signature corresponding to adaptive immunity and glucocorticoid receptor signaling. Herein we attempted to prospectively validate the existence of these gene expression-based subclasses in a validation cohort. Methods: Gene expression mosaics were generated from the 100 class-defining genes for 82 individual patients in the validation cohort. Patients were classified into 1 of 3 subclasses (A, B, or C) based on color and pattern similarity relative to reference mosaics generated from the original derivation cohort. Separate classifications were conducted by 21 individual clinicians and a computer-based algorithm. After subclassification the clinical database was mined for clinical phenotyping. Results: In the final consensus subclassification generated by clinicians, subclass A patients had a higher illness severity, as measured by illness severity scores and maximal organ failure, relative to subclasses B and C. The k coefficient across all possible inter-evaluator comparisons was 0.633. Similar observations were made based on the computer-generated subclassification. Patients in subclass A were also characterized by repression of a large number of genes having functional annotations related to zinc biology. Conclusions: We have validated the existence of subclasses of children with septic shock based on a biologically relevant, 100-gene expression signature. The subclasses can be indentified by clinicians without formal bioinformatics training, at a clinically relevant time point, and have clinically relevant phenotypic differences.
The influence of developmental age on the early transcriptomic response of children with septic shock.
Age, Specimen part, Disease, Disease stage
View SamplesWe present a gene expression atlas of early mouse craniofacial development. Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face.
A gene expression atlas of early craniofacial development.
Specimen part
View SamplesLiver biopsy samples were obtained from 64 infants with biliary atresia at the time of intraoperative cholangiogram. Liver biopsy samples were obtained from 14 age-matched infants with other causes of intrahepatic cholestasis, and from 7 deceased-donor children. GeneChip Human Gene 1.0 ST Array (Affymetrix, CA) were used to screen mRNAs whose expression was specifically regulated in the livers from patients with biliary atresia.
Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.
Specimen part
View Samples