refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 90 results
Sort by

Filters

Technology

Platform

accession-icon GSE18216
Non-targeted effects of low dose ionizing radiation act via TGF to promote mammary carcinogenesis
  • organism-icon Mus musculus
  • sample-icon 63 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

It is widely believed that the carcinogenic action of ionizing radiation is due to targeted DNA damage and resulting mutations, but there is also substantial evidence that non-targeted radiation effects alter epithelial phenotype and the stromal microenvironment. Activation of transforming growth factor 1 (TGF) is a non-targeted radiation effect that mediates cell fate decisions following DNA damage and regulates microenvironment composition; it could either suppress or promote cancer. We asked if such non-targeted radiation effects contribute to carcinogenesis by using a novel radiation chimera model. Unirradiated Trp53 null mammary epithelium was transplanted to the mammary stroma, previously divested of endogenous epithelia, of mice previously exposed to a single low (10 -100 cGy) radiation dose. By 300 days, 100% of transplants in irradiated hosts at either 10 or 100 cGy had developed Trp53 null breast carcinomas compared to 54% in unirradiated hosts. Tumor growth rate was also increased by high, but not low, dose host irradiation. In contrast, irradiation of Tgfb1 heterozygote mice prior to transplantation failed to decrease tumor latency, or increase growth rate at any dose. Host irradiation significantly reduced the latency of invasive ductal carcinoma compared to spindle cell carcinoma. However, irradiation of either host genotype significantly increased the frequency of estrogen receptor negative tumors. These data demonstrate two concepts critical to understanding radiation risks. First, non-targeted radiation effects can significantly promote the frequency and alter the features of epithelial cancer. Second, radiation-induced TGF activity is a key mechanism of tumor promotion.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE45709
The molecular basis of the renal and vascular consequences of Uremia
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Background. Chronic renal failure is characterized by progressive renal scarring and accelerated cardiovascular disease. In animal models, this is thought to be due to non-dialyzable uremic toxins small, protein-bound molecules normally secreted via Organic Anion Transporters (OATs) in the proximal renal tubule,rather than filtered at the glomerulus. The best studied of these is indoxyl sulfate (IS).

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30499
Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Nonsense-mediated RNA decay (NMD) is regulated by a variety of cellular stresses. We expose U2OS cells to several stresses and assess RNA expression in the absence of transcription (i.e. stability). These studies identify transcripts that are stabilized by the physiological inhibition of NMD.

Publication Title

Inhibition of nonsense-mediated RNA decay by the tumor microenvironment promotes tumorigenesis.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE40968
The effect of ACSL4 expression on overall gene expression in breast cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

ACSL4 expression appears to be inversely associated with steroid hormone and growth factor receptor expression in breast cancer and positively correlated with an aggressive breast cancer phenotype. Neither MCF-7 nor SKBr3 cells normally express ACSL4, and when manipulated to do so, develop basal-like characteristics, including increased proliferation, migration and anchorage independent growth. We used an Affymetrix array platform to assess changes in individual gene expression as a function of conditional and stable expression of ACSL4 in MCF-7 and SKBr3 cells.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line, Treatment

View Samples
accession-icon GSE50938
Global reprogramming of the cellular translational landscape facilitates cytomegalovirus replication
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genome-wide profiling establishes that human cytomegalovirus (HCMV) exerts an extensive, unforeseen level of specific control over which cellular mRNAs are recruited to or excluded from polyribosomes.

Publication Title

Global reprogramming of the cellular translational landscape facilitates cytomegalovirus replication.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE27816
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Recurrent somatic mutations in TET2 and in other genes that regulate the epigenetic state have been identified in patients with myeloid malignancies and in other cancers. However, the in vivo effects of Tet2 loss have not been delineated. We report here that Tet2 loss leads to increased stem-cell self-renewal and to progressive stem cell expansion. Consistent with human mutational data, Tet2 loss leads to myeloproliferation in vivo, notable for splenomegaly and monocytic proliferation. In addition, haploinsufficiency for Tet2 confers increased self-renewal and myeloproliferation, suggesting that the monoallelic TET2 mutations found in most TET2-mutant leukemia patients contribute to myeloid transformation. This work demonstrates that absent or reduced Tet2 function leads to enhanced stem cell function in vivo and to myeloid transformation.

Publication Title

Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25169
Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and their denucleation
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41608
Chromatin Remodeling Enzyme Smarca5/Snf2h Regulates Cell Cycle Exit, Differentiation of the Lens Epithelium, and Denucleation of Lens Fiber Cells
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Genome-wide approach to identify the cell-autonomous role of Snf2h in lens fiber cell terminal differentiation. Differential gene expression was analyzed in Snf2h lens-conditional knockout and wildtype newborn mouse eyeballs, with subsequent comparison of this data with the Brg1 lens-conditional knockout mouse eyes expression data (GSE25168).

Publication Title

Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38880
Subtherapeutic antibiotics alter the murine colonic microbiome and early life adiposity
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Early life exposure to antibiotics alters the gut microbiome. These alterations lead to changes in metabolic homeostasis and an increase in host adiposity. We used microarrays to identify metabolic genes that may be up- or down-regulated secondary to antibiotic exposure.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41627
DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The cellular response to DNA damage is mediated through multiple pathways that regulate and coordinate DNA repair, cell cycle arrest and cell death. We show that the DNA damage response (DDR) induced by ionizing radiation (IR) is coordinated in breast cancer cells by selective mRNA translation mediated by high levels of translation initiation factor eIF4G1. Increased expression of eIF4G1, common in breast cancers, was found to selectively increase translation of mRNAs involved in cell survival and the DDR, preventing autophagy and apoptosis (Survivin, HIF1, XIAP), promoting cell cycle arrest (GADD45a, p53, ATRIP, Chk1) and DNA repair (53BP1, BRCA1/2, PARP, Rfc2-5, ATM, MRE-11, others). Reduced expression of eIF4G1, but not its homolog eIF4G2, greatly sensitizes cells to DNA damage by IR, induces cell death by both apoptosis and autophagy, and significantly delays resolution of DNA damage foci with little reduction of overall protein synthesis. While some mRNAs selectively translated by higher levels of eIF4G1 were found to use internal ribosome entry site (IRES)-mediated alternate translation, most do not. The latter group shows significantly reduced dependence on eIF4E for translation, facilitated by an enhanced requirement for eIF4G1. Increased expression of eIF4G1 therefore promotes specialized translation of survival, growth arrest and DDR mRNAs that are important in cell survival and DNA repair following genotoxic DNA damage.

Publication Title

DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact