Background: Interaction between key signaling mechanisms is important to generate the diversity in signaling output required for proper control of cellular differentiation and function, although the molecular manifestations of such cross-talk are only partially understood. Notch signaling and the cellular response to hypoxia intersect at different points in the signaling cascades, and in this report we analyze the consequences of this cross-talk at the transcriptome level. Results: Mouse ES cells were subjected to various combinations of hypoxia and/or activated Notch signaling, and the transcriptome changes could be grouped into different categories, reflecting various modes of hypoxia and Notch signaling integration. Two principal categories of novel Notch- and hypoxia-induced genes were identified: i) a larger set of genes induced by one pathway and not significantly affected by the activity status of the other pathway; and ii) a smaller set of genes co-regulated by Notch and hypoxia. In the latter category, we identified genes that were induced by hypoxia and the expression of which was enhanced by active Notch signaling. In addition, a number of genes were induced by Notch and hypoxia independently, and a final category of genes required simultaneous activation of Notch and hypoxia to be significantly induced. Several of the hypoxia- and Notch-induced genes were found to be upregulated in various forms of cancer. Conclusions: We identify novel Notch and hypoxia downstream genes and genes co-regulated by the two pathways, providing a molecular platform to better understand the intersection between the two signaling cascades in normal development and cancer.
Interactions between Notch- and hypoxia-induced transcriptomes in embryonic stem cells.
Sex, Specimen part, Treatment
View SamplesFacioscapulohumeral muscular dystrophy (FSHD) represents a majorunmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies.Wedeveloped a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response and cell adhesion. This cellularmodelwill be a powerful tool for studying FSHDandwill ultimately assist in the development of effective treatments for muscular dystrophies.
A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles.
Specimen part
View SamplesArray analysis of total lung RNAs from female BALB/c mice collected at 12, 48 and 96 h post-infection with highly and less virulent influenza A (H3N2) viruses. Viruses (designated as LVI and HVI) were derived from influenza strain virus A/Aichi/2/68 (Aichi68). LVI is Aichi68 propagated in eggs, and HVI is mouse adapted Aichi68.
Differential pulmonary transcriptomic profiles in murine lungs infected with low and highly virulent influenza H3N2 viruses reveal dysregulation of TREM1 signaling, cytokines, and chemokines.
Sex, Specimen part, Treatment
View SamplesBrain development requires a massive increase in brain lipogenesis and accretion of the essential omega-3 fatty acid docosahexaenoic acid (DHA). Brain acquisition of DHA is primarily mediated by the transporter Major Facilitator Superfamily Domain containing 2a (Mfsd2a) expressed in the endothelium of the blood-brain barrier. Mfsd2a transports DHA and other polyunsaturated fatty acids esterified to lysophosphatidylcholine (LPC-DHA). However, the function of Mfsd2a and DHA in brain development is incompletely understood. Using vascular endothelial-specific (2aECKO) and inducible vascular endothelial-specific (2aiECKO) deletion of Mfsd2a in mice, we found Mfsd2a to be uniquely required postnatally at the blood-brain barrier for normal brain growth and DHA accretion, with DHA deficiency preceding the onset of microcephaly. Gene expression profiling analysis of these DHA deficient brains indicated that Srebp-1 and Srebp-2 pathways were highly elevated.
The lysolipid transporter Mfsd2a regulates lipogenesis in the developing brain.
Specimen part
View SamplesEye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the omega-3 fatty acid docosahexaenote (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier (BRB) or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine symporter expressed at the BRB.
Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.
Specimen part
View SamplesThe purpose of this study is to obtain comprehensive gene expression profiles in breast cancer. Mammary gland cells were specifically isolated from 433 clinical tissue samples by laser capture microdissection (LCM). Total RNAs were extracted from LCM captured samples. We investigated gene expression profiles in 417 patients with breast cancer and 16 non-tumor tissues as a normal control using an Affymetrix GeneChip.
Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients.
Specimen part
View SamplesALL is the most common form of childhood cancer with >80% cured with contemporary treatment protocols. Accurate risk stratification in childhood ALL is essential to avoid under- and over-treatment. Currently, we use presenting clinical, biological features, and minimal residual disease (MRD) quantitation to risk stratify patients. Although whole genome gene expression profiling (GEP) can accurately classify patients with ALL into various WHO 2008 defined subgroups, its value in predicting relapse remained to be defined. We hypothesized that global time-series GEPs of bone marrow (BM) samples at diagnosis and specific points during initial remission-induction therapy can measure the success of cytoreduction and be used for relapse prediction.
Effective Response Metric: a novel tool to predict relapse in childhood acute lymphoblastic leukaemia using time-series gene expression profiling.
Specimen part, Disease, Subject, Time
View SamplesChemo-resistance to platinum such as cisplatin is critical in the treatment of ovarian cancer. Recent evidences have linked epithelial-mesenchymal transition (EMT) with the drug resistance as a contributing mechanism. The current study explored the connection between cellular responses to cisplatin with EMT in ovarian cancer.
Epithelial-mesenchymal status renders differential responses to cisplatin in ovarian cancer.
Specimen part, Cell line, Treatment
View SamplesA collection of 100 ovarian cancer sample gene expression data from Singapore.
CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype.
Specimen part, Subject
View SamplesWe have made use of the E-myc transgenic mouse, a model for the study of B-cell lymphoma development that is initiated through a defined genetic alteration, to explore the contributions of additional somatic alterations that contribute to the heterogeneity of the resulting tumors. As one example of such heterogeneity, we have focused on the observation that lymphomas develop in E-myc mice with a variable time of onset. Twenty-five early-onset, 25 late-onset lymphomas and 10 normal samples were each assayed on an Affymetrix Mouse Genome 430 2.0 array.
Utilization of pathway signatures to reveal distinct types of B lymphoma in the Emicro-myc model and human diffuse large B-cell lymphoma.
No sample metadata fields
View Samples